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Abstract

Ensembles of separate neural networks (NNs) have shown superior accuracy and con-
fidence calibration over single NN across tasks. To improve the hardware efficiency of
ensembles of separate NNs, recent methods create ensembles within a single network
via adding early exits or considering multi input multi output approaches. However, it
is unclear which of these methods is the most effective for a given task, needing a man-
ual and separate search through each method. Our novel Single Architecture Ensemble
(SAE) framework enables an automatic and joint search through the early exit and multi
input multi output configurations and their previously unobserved in-between combina-
tions. SAE consists of two parts: a scalable search space that generalises the previous
methods and their in-between configurations, and an optimisation objective that allows
learning the optimal configuration for a given task. Our image classification and regres-
sion experiments show that with SAE we can automatically find diverse configurations
that fit the task, achieving competitive accuracy or confidence calibration to baselines
while reducing the compute operations or parameter count by up to 1.5⇠3.7⇥.

1 Introduction
Ensemble of independently trained NNs achieves superior accuracy and confidence calibra-
tion over a single NN across tasks [19, 27]. In a naive ensemble, each NN is trained in-
dependently, which enables the ensemble members to learn independent features and make
diverse predictions [10]. At evaluation time, each NN is queried with the same input, and the
overall prediction is obtained by aggregating the individual predictions, leading to improved
algorithmic performance. The computational cost of training and querying an NN ensemble
increases linearly with N, the number of NNs in the ensemble as O(N). Therefore, as the
number of NNs in the ensemble increases, the computational cost of training and querying
the ensemble becomes prohibitive.
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Recent advances have introduced more hardware-efficient solutions, encapsulating the
ensemble within a singular network architecture. They do so by either adding early exits
(EEs) to intermediate layers of the NN [2, 20, 25, 29], feeding the NN multiple inputs and
simultaneously expecting multiple outputs (MIMO) [14], or a blend of both: multi input
massive multi output (MIMMO) [8]. These techniques mimic the naive ensemble of NNs
by simultaneously training multiple predictors in one training round and NN architecture
and collecting their predictions in a single forward pass for the final predictions. These
optimisations reduce the computational cost of training and inference to O(1), making the
resultant ensembles hardware-efficient.

However, the current methodologies are fragmented and limited to their specific configu-
rations e.g. only considering early exits - EE, multiple inputs and outputs - MIMO, or an ex-
treme combination of both in MIMMO, and it is unclear which method is the most effective
for a given task. In this work, we hypothesise that it is necessary to unify these methods and
introduce a search space that encompasses them and their previously unexplored in-between
configurations to find the optimal configuration for a given task. Therefore we introduce the
novel Single Architecture Ensemble (SAE) framework consisting of a scalable search space
and an optimisation objective that allows learning the optimal hardware-efficient ensemble
configuration for a given task. We summarise our contributions as follows:

1.) A novel search space and problem formulation, encompassing the early exit, multiple in-
puts and outputs methods and their new in-between configurations.

2.) An optimisation objective that allows learning an optimal configuration for a given task,
facilitating automatic and efficient exploration of the proposed search space.

3.) An empirical evaluation on image classification and regression tasks demonstrating that
there is no one-size-fits-all hardware-efficient ensemble configuration out of the previous
methods, confirming our hypothesis. However, with our novel SAE framework, we can
find diverse configurations, achieving competitive accuracy or confidence calibration to
baselines while reducing the compute operations or parameter count by up to 1.5⇠3.7⇥.

2 Related Work
Modern NNs are becoming increasingly complex, with billions of parameters and hundreds
of layers [42]. Nevertheless, it can be shown that most of these parameters are unused, in-
dicating that the network is overparameterised [1]. Hardware-efficient NN ensembles utilise
this overparameterisation to train a single NN that simulates the naive ensemble by provid-
ing the practitioner with diverse predictions in a single pass, thus improving the algorithmic
performance while maintaining the hardware efficiency of a single NN. These approaches
include early exit (EE) networks [2, 20, 25, 29], multi input multi output (MIMO) net-
works [14], and multi input massive multi output (MIMMO) networks [8].

We illustrate these approaches by considering a network consisting of D � 1 layers, and
processing N � 1 inputs and outputs. A standard single exit (SE) NN processes a single input
and output, N = 1, and gives a single prediction at the maximum depth of the network, D.

Early Exit (EE) EE networks [2, 20, 25, 29] introduce minimally-parametrised auxiliary
exits at all or some intermediate layers within D layers of the NN. These exits predict the
output at their respective depth, and the final prediction for a particular input is obtained
by aggregating the predictions of all exits. The EE network leverages models of varying
capacity by ensembling the exits’ predictions at different network depths. For EE, the free
parameter is the number and position of the exits within the network’s depth D.
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Multi Input Multi Output (MIMO) MIMO networks [14, 22, 26, 30, 33, 35, 36] pro-
cess multiple inputs in a single architecture while being competitive with rank-1 Bayesian
NNs and Batch Ensemble approaches [7, 38, 39]. A MIMO network processes N inputs
and outputs simultaneously, such that N inputs are concatenated before the first layer into
a single feature tensor. At the end of the network at depth D, the network gives N predic-
tions, a separate prediction for each input. During training all the N input and target pairs
are distinct, and at test time, the predictions for N repeated identical inputs are aggregated
to give a single prediction. MIMO learns a representation that encodes the information from
all inputs simultaneously, utilising the network’s capacity more efficiently. For MIMO, the
free parameter is the number of inputs N that the network should process simultaneously.

Multi Input Massive Multi Output (MIMMO) MIMMO networks [8] combine MIMO
and EE by adding exactly D�1 reshaping connectors to the network, feeding in the interme-
diate layers’ outputs to the prediction head at the final layer. MIMMO processes N inputs and
outputs for each exit, resulting in N ⇥ D predictions per forward pass through the network.
MIMMO trains to match the predictions between all exits and targets, and at test time, the
predictions are averaged across all exits for repeated inputs. While MIMMO utilises all the
exits’ predictions within the network’s depth D, the number of inputs N is a free parameter.

The current methodologies in hardware-efficient NN ensembles, such as EE, MIMO, and
MIMMO, are specialised and constrained to particular settings. For instance, EE focuses on
the arrangement and number of exits within a network’s depth, MIMO on processing multi-
ple inputs simultaneously, and MIMMO combines features of both, optimising the usage of
all exits and the number of inputs. Our work argues that there is not a universal, optimal con-
figuration or method that suits all problem settings, but it depends on the type and size of the
NN and the complexity of the dataset. Therefore, it is necessary to define a scalable search
space that encompasses these methods and introduces their novel in-between configurations,
and an optimisation objective that allows its efficient exploration. In the Supplementary Ma-
terial, we provide an even more detailed comparison of the generalised methods, and baseline
methods compared to in the experiments.

3 Single Architecture Ensemble (SAE)
To address the limitations of the current methodologies, we introduce the SAE framework.
It consists of a scalable search space and an optimisation objective that allows learning the
optimal hardware-efficient ensemble configuration for a given task.

3.1 Search Space of SAE
We first consider a naive generalisation of the EE, MIMO, and MIMMO methods and their
novel in-between configurations by considering a network with D layers and N inputs and
outputs per exit. If we consider that a network processes N inputs and can have up to D
exits, we can represent the search space of the generalised methods and their in-between
configurations as (2D

�1)
N , where (2D

�1) exits are turned on or off for each input in N.
Manual exploration of this search space is impractical, and it is necessary to introduce a
simplification that allows automatic and efficient exploration of the search space.

We simplify the search space by considering the number of inputs N and the maximum
number of exits 1  K  D that can be active for each input in N. The new efficient search
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Figure 1: The Single Architecture Ensemble (SAE). The filled rectangles stand for learnable
layers { f j(·)}D

j=1 and prediction heads {h j(·)}D
j=1, while the empty rectangle represents a

non-parametric operation. The D is the network depth, N is the number of separate inputs in
the ensemble, and K is the maximum number of active exits during evaluation for each input.
The {xi}

N
i=1 are the N inputs and {ŷ j

i }
N,D
i, j=1 represent the predictions from the D exits for N

inputs. The arrows represent the flow of information. The dashed and greyed boxes and
arrows represent exits that were active during training but inactive during evaluation because
of top K exits identified during training.

space is reduced to N ⇥D ⌧ (2D
�1)

N where a practitioner needs to try N ⇥D configurations
via setting N and K. By setting N and K, we recover the generalised methods as:

• if N = 1, K = 1, this is a Standard Sin-
gle exit (SE) NN;

• if N = 1, K � 2, this is an EE NN;
• if N � 2, K = 1, this is a MIMO NN;

• if N � 2, K = D, this is a MIMMO NN;
• if N � 2, 1 < K < D, this is a pre-

viously unexplored In-Between (I/B)
configuration.

The SAE search space can be illustrated as a network architecture in Figure 1. The
network processes N inputs via a widened input layer, after which the refined features of
the D layers are processed by exits at different depths. During training, all the exits are
active, and the network produces N⇥D predictions. However, during evaluation, the network
produces N ⇥K predictions by selecting the top K exits for each input. Next, we present the
optimisation objective that allows learning which K exits to use for each input in N and the
network weights at the same time.

3.2 Optimisation Objective of SAE
The optimisation is built on jointly learning the network weights and the depth distribution
of the K most suitable exits for each input in N via variational inference [3]. Through defin-
ing the preferences for the exits for each input as learnable variables, we avoid having to
manually search through the search space of (2D

�1)N configurations, and instead the depth
preference is learned during training, similarly to learning operations in differentiable neural
architecture search (DNAS) [23]. In contrast to DNAS, the final configuration does not need
to be discretised and retrained. To fully explore the search space, the user needs to run the
training only N ⇥ D times, where up to D exits can be active for each input, making the
traversal of the search space more efficient.

We define the SAE’s optimisation objective, initially considering N independent ensem-
ble inputs. Denote the dataset D = {xi,yi}

|D|

i=1, where xi is the input and yi is the ground truth
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for input i and |D| is the size of the dataset D. We assume initially that our model processes
N inputs {xi}

N
i=1 and produces N matching outputs {ŷi}

N
i=1. During training, we assume that

the N inputs {xi}
N
i=1 and targets {yi}

N
i=1 are sampled independently from the dataset D in N,

hence assuming independence between p({yi}
N
i=1|{xi}

N
i=1,w) = ’N

i=1 p(yi|{xz}
N
z=1,w) [14],

where w are the learnable weights. By independence, we mean that the pairs (xi,yi) are sam-
pled independently from the other N �1 pairs. There is no mixing of inputs and targets and
yi is the ground truth associated with xi. We denote xi = {xz}

N
z=1 as the input for i, containing

xi and N �1 random sampled inputs from the dataset D, matching the {yi}
N�1
i=1 .

With the independence assumption, we introduce the exits, which enable the NN to make
a prediction for each input i at D different depths as p(yi|xi,di = j,w) = p(yi|ŷ

j
i ); ŷ j

i =
h j( f j( f j�1(. . . f 1(xi)))) where 1  j  D and f j(·) is the j-th layer and h j(·) is the pre-
diction head for the j-th layer. The ŷ j

i is the prediction for input i at depth j and di is the
latent variable for D exits for input i. The computation is visualised in Figure 1.

The evidence of the data for a single tuple is p(yi|xi,w) = ÂD
j=1 p(yi|xi,di = j,w)p(di =

j) for a categorical prior for the latent variable di, p(di) where p(d) = ’N
i=1 p(di). We

introduce a categorical variational distribution q(d|q) = ’N
i=1 q(di|qi) with parameters q =

{q j
i }

N,D
i, j=1, where qi are the parameters of the weightings of all the exits for input i. Our aim

is to learn q to determine the K active exits for each input during evaluation together with w.
Antorán et al. [2] demonstrated for N = 1 that by choosing the prior and the varia-

tional distribution to be categorical, it is possible to jointly optimise w and q and max-
imise the evidence lower bound of the data via stochastic gradient ascent. To derive the
evidence lower bound for all N independent predictors, we minimise the Kulback-Leibler
(KL) divergence [4] between the variational distribution q(d|q) and the posterior distribu-
tion p(d|D,w) = ’N

i=1 p(di|D,w) as:

KL(q(d|q) || p(d|D,w)) =
N

Â
i=1

KL(q(di|qi) || p(di|D,w))

=
N

Â
i=1

Eq(di|qi)


logq(di|qi)� log

p(Yi|Xi,di,w)p(di)

p(Yi|Xi,w)

�

=
N

Â
i=1

Eq(di|qi) [� log p(Yi|Xi,di,w)]

| {z }
Data-fit in �L(w,q)

+KL(q(di|qi) || p(di))| {z }
Regulariser in �L(w,q)

+
N

Â
i=1

log p(Yi|Xi,w)

| {z }
Evidence

(1)

The KL divergence in Equation 1 is decomposed into the expectation of the log-likelihood, or
the data-fit term, of the data Yi = {y( j)

i }
|D|

j=1, given input tuples Xi = {x( j)
i }

|D|

j=1 for dataset size
|D|, the exits di and the weights w, the KL divergence between the variational distribution
q(di|qi) and the prior distribution p(di), or the regulariser term, and the evidence of the
data. The KL divergence is non-negative, and the evidence of the data is maximised when
the L(w,q) is maximised as L(w,q)  ÂN

i=1 log p(Yi|Xi,w). The objective L(w,q) can be
further decomposed with respect to all the inputs N and the whole dataset D as in Equation 2.

L(w,q) =
N

Â
i=1

Eq(di|qi) [log p(Yi|Xi,di,w)]�
N,D

Â
i, j=1

q j
i log

q j
i

D�1

=
N,|D|

Â
i,b=1

Eq(di|qi)

h
log p(y(b)

i |x(b)
i ,di,w)

i
�

N,D

Â
i, j=1

q j
i log

q j
i

D�1 (2)
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The b is the index of the input tuple x(b)
i and the target y(b)

i sampled from the dataset D.

We assume a uniform categorical prior, meaning that the KL divergence between the
variational distribution q(d|q) and the prior distribution p(d) can be computed in closed
form. Equation 3 approximates the evidence lower bound, where B is the batch size.

L(w,q) ⇡
|D|

B

N,B

Â
i,b=1

Eq(di|qi)

h
log p(y(b)

i |x(b)
i ,di,w)

i
�

N,D

Â
i, j=1

q j
i log

q j
i

D�1 (3)

We propose to sample the depth variable di from the variational distribution q(di|qi)
using a top K sampling strategy [18] which enables us to optimise the q towards the top K
exits per input. We use one Monte Carlo sample per batch to approximate the expectation,
the sum of the D log-likelihoods multiplied by the sampled probabilities of di. The q are
implemented as zero-initialised logits divided by a temperature T to which softmax was

applied to normalise the logits as q j
i =

exp(l j
i /T )

ÂD
k=1 exp(lk

i /T )
and l j

i is the j-th exit logit for input i.

We empirically observed that the training of the SAE might be compromised by overreg-
ularisation, which can be caused by the regulariser term in Equation 3 or by the size of the
dataset |D|. We propose to multiply the regulariser term by a factor a(t), where 0  a(t)  1
is a linear interpolation depending on the training step t, and replace the |D|

B with 1 in Equa-
tion 3. Furthermore, we propose to linearly interpolate between starting and ending values
of the temperature 0 < T (t)  1 and the input repetition factor 0  i(t)  1 during training,
where the starting and ending values can be optimised. The T (t) determines the sharpness
of the probabilities over the auxiliary exits during sampling, which enables the framework
to gradually focus on the K most important auxiliary exits for each input in the architecture.
The i(t) determines a portion of the batch B where the same input is repeated across all the N
inputs, relaxing the independence assumption [14]. The linear interpolation of hyperparam-
eters aims to enable the framework to iterate over multiple configurations during training,
trading-off exploration and exploitation of the search space. We empirically observed that
the linear hyperparameter schedules were not too disruptive to the training process, however,
other strategies can be considered.

During the evaluation, the SAE framework produces N ⇥K predictions {ŷ j
i }

N,K
i, j=1, where

K is the number of exits used for each input in N. It does so through only keeping the top
K largest logits and setting the rest to negative infinity to give q ⇤ = {q ⇤ j

i }
N,K
i, j=1. If no inputs

select an exit at some level j, it does not need to be implemented as shown in Figure 1 in
grey. The input sample is repeated N times as x⇤ = {xi}

N
i=1 and the predictions from the

active exits are collected. The final prediction is obtained by averaging the predictions from
the exits and their q ⇤ j

i as ŷ⇤ = 1
N ÂN,K

i, j=1 ŷ j
i q ⇤ j

i which approximates the marginal likelihood.

In summary, the training objective L(w,q) allows us to learn the exit preferences q for
each input i 2 N and each exit j 2 D along the network’s weights w via gradient ascent.
A practitioner can set the N � 1 and 1  K  D to explore the search space of the gener-
alised methods and their novel in-between configurations by optimising the w and q via the
L(w,q). The resultant w and q ⇤ define the optimal configuration for a given task, maximally
exploiting the network’s capacity through the search space exploration. In the Supplemen-
tary Material, we provide an Algorithm summarising the training and evaluation as well as
the implementation details for the input and early exits per architecture type.
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Figure 2: Comparison on ID test sets, with respect to Standard NN  , NN Ensemble ⌅,
SAE: I/B: N � 2,2  K < D , EE: N = 1,K � 2 , MIMMO: N � 2,K = D ,
MIMO: N � 2,K = 1 , SE NN: N = 1,K = 1 , MCD N, BE J. The black outlines
denote the configurations compared in the text.

4 Experiments
We perform experiments on four datasets: TinyImageNet [21], BloodMNIST, Pneumoni-
aMNIST and RetinaMNIST, [40] for both classification and regression tasks. Our architec-
ture backbones are ResNet [15] for TinyImageNet, ViT [6] for RetinaMNIST, VGG [32] for
BloodMNIST, and a residual fully connected net with batch normalisation [17] and ReLU
activations (FC) for PneumoniaMNIST. We compare approaches under SAE with Monte
Carlo Dropout (MCD) [11], where we insert dropout [34] layers before each linear or convo-
lutional layer. We also compare to Batch Ensemble (BE) [38], where the BE layers replace
all linear and convolutional layers in the network. The algorithmic lower bound is a standard
NN. The algorithmic upper bound is a naive ensemble of NNs. We employ multi-objective
Bayesian optimisation (MOBO) to perform hyperparameter optimisation (HPO) for SAE
and: 1  N  4,1  K  D the input repetition, alpha and temperature start and end values
and the width of the network for all the evaluated metrics simultaneously on the validation
dataset. For all the other methods, we enumerate networks of all widths, depths, or N for BE
and NN ensembles. Exceptions are MCD, for which we set N = 4 to make it competitive
and we fix the network width for TinyImageNet. We use MOBO to search for the MCD or
SAE’s parameters. We minimise unweighted negative log-likelihood (NLL) loss for all tasks
except for SAE. For classification, we measure F1 score [" 0,1], Accuracy (ACC) [" 0,1],
Expected Calibration Error (ECE) [# 0,1], Class Conditional ECE (CC-ECE) [# 0,1] and the
NLL [# 0,•) as evaluation metrics. For regression, we use Gaussian NLL [# �•,•) and
mean squared error (MSE) [# 0,•) as evaluation metrics. From the hardware perspective,
we measure the number of floating point operations (FLOPs) [# 0,•) and the number of pa-
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(a) TinyImageNet ACC.

1 2 3 4
K

1

2

3

4

N

0.35 ± 0.02
(7)

0.39 ± 0.11
(2)

0.36 ± 0.00
(1)

0.29 ± 0.00
(1)

0.23 ± 0.10
(5)

0.14 ± 0.07
(4)

0.09 ± 0.05
(29)

0.07 ± 0.04
(71)

0.37 ± 0.11
(2)

0.19 ± 0.12
(4)

0.15 ± 0.13
(4)

0.05 ± 0.00
(1)

0.18 ± 0.10
(2)

0.14 ± 0.09
(8)

0.13 ± 0.11
(8)

SE NN; N = 1, K = 1 EE; N = 1, K � 2

MIMO; N � 2, K = 1 MIMMO; N � 2, K = D

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
C

E
[0

-1
]

(b) TinyImageNet ECE.
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(c) BloodMNIST F1.
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(d) BloodMNIST CC-
ECE.
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(e) PneumoniaMNIST
F1.
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(f) PneumoniaMNIST
CC-ECE.
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(g) RetinaMNIST MSE.
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(h) RetinaMNIST NLL.

Figure 3: Varying N,K on across ID test sets. The upper number is the average performance
over N, K combinations. The number in brackets is the number of sampled configurations by
HPO. White box means no configurations sampled for that N, K. Pattern signals best average
performance. The coloured outlines signal the special cases for the generalised methods.

rameters [# 0,•). We test on ID and OOD data created by applying augmentations to the
test set, such as Gaussian noise, motion blur, and contrast changes [16]. We chose versatile
architectures paired with datasets of varying complexity to demonstrate the SAE’s effective-
ness across different tasks and datasets. The Supplementary Material details architectures,
datasets, metrics, HPO runs, additional results on the correlation of of hyperparameters, in-
cluding N, K, a(t), i(t) and T (t) and the performance, and OOD experiments.

4.1 Baseline Comparison
In Figure 2, we compare Pareto optimal configurations identified via HPO across all metrics
and datasets. In the upper row, we show the results on ACC/F1/MSE and ECE/CC-ECE/NLL
and in the lower row, we show the results on FLOPs and parameters. We split the methods in
SAE into 5 categories based on the N and K: I/B: N � 2,2  K < D , EE: N = 1,K � 2

, MIMMO: N � 2,K = D , MIMO: N � 2,K = 1 , SE NN: N = 1,K = 1 . The
black outlines around the markers in the Figures denote the configurations compared in the
text. The results are averaged across 4 random seeds. The Supplementary Material contains
numerical results for OOD datasets, the dataset’s best configurations and NLL comparison.

The overall results show that SAE’s Pareto points cluster around the best algorithmic and
hardware performance, while providing trade-offs between the two. For TinyImageNet, in
Figures 2a and 2e, it can be seen that the ensemble ⌅ achieves the best accuracy. However,
SAE can find an I/B configuration which is within 3% of accuracy, but 4% better
ECE than the best ensemble ⌅ with 3.2⇥ fewer FLOPs and 1.5⇥ fewer parameters. For
BloodMNIST, in Figures 2b and 2f, it can be seen that the ensemble ⌅ achieves the best
algorithmic performance. At the same time, the SAE can find an I/B configuration
which is within 1% of the F1 score or CC-ECE with a comparable number of parameters but
approximately 1.5⇥ fewer FLOPs. For PneumoniaMNIST, in Figures 2c and 2g, it can be
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(b) BloodMNIST.
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(c) PneumoniaMNIST.
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(d) RetinaMNIST.
Figure 4: Depth preference during training when averaging all N and K for all datasets. The
lines denote the mean trend, and the shaded regions denote the standard deviation across
configurations.

seen that the EE configuration is the best-performing method with approximately half
FLOPs than the closest BE J. For RetinaMNIST, in Figures 2d and 2h, it can be seen that in
terms of NLL the MIMO configuration is comparable to the ensemble ⌅ with marginally
fewer FLOPs and parameters.

In summary, SAE can find a set of competitive or better configurations than the baselines
across all datasets, tasks, architectures with various capacities, and evaluation metrics using
fewer or comparable FLOPs and parameters. We hypothesise that this is due to the regu-
larisation effect of the proposed objective, which prevents overfitting and instead focuses on
fitting multiple sub-networks, each learning diverse representations, thus maximally utilis-
ing the capacity of the network. Combination of the representations, reflected via the diverse
predictions ultimately leads to better algorithmic performance. In the Supplementary Mate-
rial, we rank the methods based on their mean performance across all their Pareto optimal
points, datasets and metrics and show that SAE achieves best or competitive ranks across
the algorithmic metrics. SAE does not need custom operations as in BE, random number
generators as in MCD, or more training rounds than a standard NN, MCD, or BE, it only
needs to add compute-efficient early exits and an enlarged input layer capable of processing
multiple inputs. The Supplementary Material provides a detailed hardware cost breakdown
of SAE per each architecture type.

4.2 Ablations
In Figure 3, we investigate the influence of N and K on the algorithmic performance across
ID test sets across all datasets. The Figures show the average performance across all N and
K combinations across the individual HPO runs for each dataset.

As seen across the Figures, the best combinations of N and K can vary for the same
dataset but different metrics, requiring a detailed search based on the specific use case. Fig-
ures 3a and 3b show that for TinyImageNet, N = 2,4 and K = 4,1 are the best configurations
for accuracy and ECE, respectively. Figures 3c and 3d show that for BloodMNIST, N = 2,1
and K = 4,1 are the best configurations for F1, CC-ECE, respectively. Figures 3e and 3f
show that for PneumoniaMNIST, N = 1,4 and K = 3,5 are the best configurations for F1,
CC-ECE, respectively. Lastly, Figures 3g and 3h show that for RetinaMNIST, N = 1,2 and
K = 5,2 are the best configurations for MSE and NLL, respectively.

An interesting observation is that N > 1 leads to better algorithmic performance, which
differs from [8, 14] where N > 1 consistently leads to worse performance. On one hand,
we observed that for easier problems, for example, PneumoniaMNIST the model’s capacity
is large in comparison to the complexity of the problem, hence the network was able to
learn representations for multiple predictors in the same architecture resulting in N > 1 and
K > 1 configurations being beneficial. On the other hand, for harder problems, for example,
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TinyImageNet, the model’s capacity was not sufficient to learn the representations for too
many predictors, hence the performance peaks at a certain N and K combination.

Furthermore, we look at the learnt depth preference during training across all N and K
for all datasets in Figure 4. As discussed in the previous paragraph, if the model’s capacity is
large in comparison to the complexity of the problem, the depth preference is more uniform
across the depths, as seen in Figures 4b, 4c, and 4d for BloodMNIST, PneumoniaMNIST,
and RetinaMNIST, respectively. However, if the model’s capacity is not sufficient to learn
the representations for too many predictors, the depth preference is strongly biased towards
deeper depths, as seen in Figure 4a for TinyImageNet. These observations further validate
our initial claim that there is no single best multi input multi output or early exit configu-
ration across all datasets, tasks, and architectures, necessitating the need for a thorough and
automatic search depending on the use case.

In terms of the backbone architectures and their impact on performance, we compare
BloodMNIST and RetinaMNIST which have a similar complexity but use different archi-
tectures: VGG and ViT, respectively. We notice that for both problems the algorithmic
performance improvements are similar across the datasets. However as discussed in the pre-
vious paragraphs, the optimal N and K, along with other hyperparameters, as well as the
depth preference differ between the two datasets. Despite the different backbone architec-
tures, the SAE can find competitive configurations for both datasets and architectures. The
Supplementary Material contains more results on changing N,K or and depth preference.

5 Discussion
In this work we proposed the Single Architecture Ensemble (SAE). This unified framework
melds the strengths of diverse hardware-efficient ensemble methods, outperforming tradi-
tional baselines in confidence calibration, accuracy and versatility across varied datasets,
tasks, and architectures. Our findings underscore the necessity of SAE due to the lack
of a universally superior method across all datasets, tasks, and architectures. Our method
demonstrated that different network depths were used in different architectures and problem
complexities, necessitating the need to learn the appropriate depth usage. Furthermore, we
showed the different requirements for different architectures and the usefulness of adaptive
hyperparameter scheduling.

There are multiple limitations of our study. In order to gain full benefits from SAE, the
early exits, which introduce branching in the architecture, need to be implemented efficiently.
An inefficient implementation can lead to a significant increase in the real-world hardware
cost both during training and evaluation. Furthermore, we assumed an independence as-
sumption between the inputs, which might not hold in practice. A theoretical investigation
is needed to understand more complex assumptions and their impact on the performance
and the trade-offs between the network’s representation capacity and quality of the learned
representations. Lastly, we focused on image classification or regression tasks commonly
solved in the community, which could fit our computational budget.

Therefore, in future work, we plan to investigate the theoretical properties of the SAE,
such as the impact of the independence assumption on the performance and the trade-offs
between the network’s representation capacity and the quality of the learned representations.
Furthermore, to minimise the number of sub-optimal configurations, we plan to investigate
the automatic learning of N and K, standing for the number of inputs and exits, respectively
on tasks beyond image classification and regression.
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