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In this supplementary material, we present more qualitative comparisons on both syn-
thetic and real-world data in Sec. 1. We also provide more implementation details in Sec. 2.

1 Additional Qualitative Comparisons

We present more qualitative comparisons among AutoSDF, SDFusion and our method. Fig. 1,
Fig. 2 and Fig. 3 contain visualizations from synthetic data. Fig. 4, Fig. 5 and Fig. 7 provides
qualitative samples from real-world data. Our method generally generates higher quality and
more plausible hypothesis shapes compared with other baselines.

2 Further Implementation Details

2.1 Multi-Hypothesis Data Augmentation

In our approach, we allow the input image to be mapped to potentially multiple ground-truth
shapes that align with the image. We initially classify CAD models from the dataset into sim-
ilar groups. When evaluating two models, if they exhibit identical part counts and semantics,
and their geometric similarity surpasses a predefined threshold, we classify them as similar.
Then, for each rendered view of the target model, we extract per-pixel part labels and visible
points in 3D space. We consider models from the same similar group as mapping candidates.
We iterate through these candidates, employing exactly the same rendering parameters as the
target model, and obtain their per-pixel part labels and visible parts in 3D space. We then
compare this information with that of the target model: if the overlap of per-pixel part labels
and the geometric similarity of visible parts exceed predefined thresholds, we include the
candidate in the ground-truth mapping for the image.

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 XIONG AND DAI: PT43D

Input Image

Ground-Truth

Ours

SDFusion

AutoSDF

Input Image

Ground-Truth

Ours

SDFusion

AutoSDF

Figure 1: More Qualitative Comparisons on Synthetic Data. Our method generates higher
quality and more plausible hypotheses compared with other baselines.
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Figure 2: More Qualitative Comparisons on Synthetic Data. Our method generates higher
quality and more plausible hypotheses compared with other baselines.
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Figure 3: More Qualitative Comparisons on Synthetic Data. Our method generates higher
quality and more plausible hypotheses compared with other baselines.
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Figure 4: More Qualitative Comparisons on Real-World Data. Our method generates
higher quality and more plausible hypotheses compared with other baselines.
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Figure 5: More Qualitative Comparisons on Real-World Data. Our method generates
higher quality and more plausible hypotheses compared with other baselines.
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Figure 6: More Qualitative Comparisons on Real-World Data. Our method generates
higher quality and more plausible hypotheses compared with other baselines.
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Figure 7: More Qualitative Comparisons on Real-World Data. Our method generates
higher quality and more plausible hypotheses compared with other baselines.
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Figure 8: Visible Points in 3D Space. We present three sets of synthetic samples. Within
each set, left is the rendering and right is the visible points of the target object in 3D space.

2.2 Network Architecture

Image Encoder. We choose the "ViT-B/32" version of CLIP[2] as our image encoder, yield-
ing image encodings with a shape of N′×D′, where N′ = 50 represents the number of image
tokens, and D′ = 768 indicates the feature dimension.
Conditional Cross-Attention. The input sequence is multiplied with a weight matrix Q.
This matrix multiplication results in a sequence of queries with the shape of N′′×d, where
N′′ is the length of the input sequence and d is a predefined hidden dimension. Likewise,
the image encodings are multiplied with weight matrices V and K independently, generating
values and keys respectively. Both are in the shape of N′ × d. Subsequently, each query
performs dot product with each key, generating corresponding attention scores α:

αmn =
so f tmax(qm · kn)√

d
. (1)

where qm is the m-th query and kn is the n-th key. Then for each cell i of the input sequence,
its embedding is replaced by the weighted sum of values:

embi =
N′−1

∑
j=0

αi j · v j. (2)

where v j is j-th value. In practice, we apply 8 multi-head attention heads and a hidden
dimension of 512.
Transformer. The transformer[4] comprises 12 encoder layers, each with 12 multi-head
attention heads and a hidden dimension of 768. Notably, it does not contain a decoder,
indicating that all attention layers are self-attention. The training within the transformer is
done in parallel. We feed the attention mask with upper-triangular matrix of −∞, and zeros
on the diagonal to make sure the information do not leak from the future elements. We use
fourier features for the positional embedding for all locations i following Tancik et al. [3].
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2.2.1 Fine-Tuning on Real-World Data

To address the domain gap between our synthetic training pairs and real-world images, we
fine-tune our pretrained model using real-world images from ScanNet[1]. To preserve the
ability for generating diverse shapes, we freeze the transformer-based generation backbone
and only fine-tune the CLIP encoder and the conditional cross-attention module. We fix the
batch size to 10 and utilize an initial learning rate of 5e-6 for the CLIP encoder and 1e-5 for
the conditional cross-attention module. We fine-tune them for around 1,000 iterations.
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