PT43D: A Probabilistic Transformer for Generating 3D Shapes BMVC from Single Highly-Ambiguous RGB Images paper, code

Yiheng Xiong Angela Dai Technical University of Munich

Problem

Reconstructing 3D structure and geometry from **single-view**, highly-ambiguous object observations.

3D Reconstruction

Probabilistic Shape Generation Approach

and data

Our probabilistic approach uses transformer with conditional

Challenges

- Contributions
- **Probabilistic** approach for shape generation from single highly-ambiguous RGB images.
- Synthetic data augmentation for **improved** real-world fine-tuning.

Solution: Multi-Hypothesis Sampling

cross-attention to **autoregressively** predict a **distribution** in latent space for **each grid** from an input RGB image, enabling the generation of multiple plausible shape hypotheses.

Identifying the Most Relevant Regions in the **Image via Conditional Cross-Attention**

We perform **cross-attention** between image encodings and the input sequence to effectively **identify the most relevant region of interest** from the input image.

Synthetic Data Augmentation

Our approach seeks to model the **distribution** of 3D shapes in **latent space** conditioned on a single highly ambiguous image, enabling the sampling of **multiple diverse hypotheses** during inference.

Comparisons to State-of-the-Art

Our aim is to generate shapes that capture the **distribution** of possible reconstructions that explain an input image observation. Thus, we evaluate both **diversity** of reconstructed shapes as well as their reconstruction **quality**. Our method generates **higher** quality shapes compared with other baselines, with a **more reasonable diversity**, both quantitatively and qualitatively.

	Synthetic Data from ShapeNet				Real-World Data from ScanNet			
	TMD↑	bi-CD↓	F-score↑	visible CD↓	TMD↑	bi-CD↓	F-score↑	visible CD↓
AutoSDF	0.045	5.04	0.215	-	0.021	8.32	0.164	_
SDFusion	0.091	4.52	0.194	6.71	0.132	4.97	0.200	10.4
Ours	0.062	4.41	0.224	5.41	0.096	3.61	0.228	5.89

