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Contributions
• Present a flexible graph convolutional network (Flex-GCN), which

captures highorder dependencies essential for reducing uncertainty
due to occlusion or depth ambiguity in 3D human pose estimation.

• Designed network architecture that includes flexible graph convolu-
tional layers and a global response normalization layer.

Model Architecture

Method
Flexible Graph Convolutional Network. Central to graph neural net-
works lies the fundamental concept of the feature propagation rule, which
determines how information is transmitted among nodes in a graph. To this
end, we propose a flexible graph convolutional network (Flex-GCN) with the
following layer-wise update rule for node feature propagation:

H(ℓ+1) = σ
(

((1 − s)I + sÂ)ÂH(ℓ)W(ℓ) + XW̃(ℓ)
)

,

ℓ = 0, . . . , L − 1

where s ∈ (0, 1) is a positive scaling parameter, W(ℓ) and W̃(ℓ) are learnable
weight matrices, σ(·) is an element-wise activation function, H(ℓ) ∈ RN×Fℓ

is the input feature matrix of the ℓ-th layer with Fℓ feature maps. The input
of the first layer is H(0) = X.

Flex-GCN Network Design.

• The input 2D pose undergoes a flexible graph convolutional layer,
followed by a GELU activation function.

• Residual block consists of three flexible graph convolutional (Flex-
GCNConv) layers.

• In each block, the first two convolutional layers are followed by
layer normalization, while the third one is followed by GELU.

• This residual block is repeated four times. Then, a global response
normalization (GRN) layer is applied after the residual blocks .

• The last flexible graph convolutional layer of the network generates
the 3D pose.

Results and Ablation study
Performance comparison using the
ground truth 2D pose as input.

Method MPJPE (↓) PA-MPJPE (↓)

SemGCN [6] 42.14 33.53
High-order GCN [7] 39.52 31.07
Modulated GCN [9] 38.25 30.06
Weight Unsharing [2] 37.83 30.09

Ours 37.41 29.87

Runtime analysis.
Method Inference Time

High-Order GCN [7] .013s
Weight Unsharing [2] .032s
MM-GCN [1] .009s
Modulated GCN [9] .010s

Ours 0.06s

Ablation study
Effect of initial residual connection (IRC).

Method MPJPE (↓) PA-MPJPE (↓)

Without IRC 39.76 31.25
With IRC 37.41 29.87

symmetry of modulation adjacency.
Method MPJPE (↓) PA-MPJPE (↓)

Without Symmetry 37.99 30.11
With Symmetry 37.41 29.87
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Figure :With and without pose refinement
Note on reproducibility: Code and pre-trained
models are available:
https://github.com/shahjahan0275/Flex-GCN

Results
Comparison of our model and baseline methods in terms of MPJPE in millimeters,
computed between the ground truth and estimated poses on Human3.6M under Pro-
tocol #1.
Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Liu [2] 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
Zou [7] 49.0 54.5 52.3 53.6 59.2 71.6 49.6 49.8 66.0 75.5 55.1 53.8 58.5 40.9 45.4 55.6
Xu [4] 47.1 52.8 54.2 54.9 63.8 72.5 51.7 54.3 70.9 85.0 58.7 54.9 59.7 43.8 47.1 58.1
Zou [8] 48.4 53.6 49.6 53.6 57.3 70.6 51.8 50.7 62.8 74.1 54.1 52.6 58.2 41.5 45.0 54.9
Quan [3] 47.0 53.7 50.9 52.4 57.8 71.3 50.2 49.1 63.5 76.3 54.1 51.6 56.5 41.7 45.3 54.8
Zou [9] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
Lee [1] 46.8 51.4 46.7 51.4 52.5 59.7 50.4 48.1 58.0 67.7 51.5 48.6 54.9 40.5 42.2 51.7
Zhang [5] 45.0 50.9 49.0 49.8 52.2 60.9 49.1 46.8 61.2 70.2 51.8 48.6 54.6 39.6 41.2 51.6

Ours 40.2 45.8 45.0 46.8 48.6 54.0 42.4 42.1 53.2 66.7 45.6 45.4 48.8 38.4 40.1 46.9

Comparison of our model and baseline methods in terms of PA-MPJPE, computed
between the ground truth and estimated poses on Human3.6M under Protocol #2.
Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Liu [2] 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2
Zou [7] 38.6 42.8 41.8 43.4 44.6 52.9 37.5 38.6 53.3 60.0 44.4 40.9 46.9 32.2 37.9 43.7
Xu [4] 36.7 39.5 41.5 42.6 46.9 53.5 38.2 36.5 52.1 61.5 45.0 42.7 45.2 35.3 40.2 43.8
Zou [8] 38.4 41.1 40.6 42.8 43.5 51.6 39.5 37.6 49.7 58.1 43.2 39.2 45.2 32.8 38.1 42.8
Quan [3] 36.9 42.1 40.3 42.1 43.7 52.7 37.9 37.7 51.5 60.3 43.9 39.4 45.4 31.9 37.8 42.9
Zou [9] 35.7 38.6 36.3 40.5 39.2 44.5 37.0 35.4 46.4 51.2 40.5 35.6 41.7 30.7 33.9 39.1
Lee [1] 35.7 39.6 37.3 41.4 40.0 44.9 37.6 36.1 46.5 54.1 40.9 36.4 42.8 31.7 34.7 40.3
Zhang [5] 35.3 39.3 38.4 40.8 41.4 45.7 36.9 35.1 48.9 55.2 41.2 36.3 42.6 30.9 33.7 40.1

Ours 34.1 38.0 36.8 39.7 39.2 43.6 33.4 34.5 44.2 57.1 38.3 36.0 41.0 29.9 33.1 38.6
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along with their average performance. Table 1 shows that Flex-GCN yields competitive
performance, with average MPJPE and PA-MPJPE errors of 46.9mm and 38.6mm, respec-
tively. Under Protocol #1, Table 1 reveals that Flex-GCN performs better than Modulated
GCN [24] in 14 out of 15 actions, yielding 2.5mm error reduction on average, improving
upon this best performing baseline by a relative improvement of 5.08%. Our model achieves
better predictions than the best baseline on challenging actions like hard poses involving ac-
tivities of self-occlusion such as “Eating”, “Sitting” and “Smoking”, showing relative error
reductions of 1.53%, 7.47% and 8.24%, respectively, in terms of MPJPE. The presence of
self-occlusions during activities can pose challenges for human pose estimation, as they re-
strict the model’s access to observable information. For instance, some activities like eating
or smoking can lead to occlusions where a person’s hands and arms obstruct parts of their
face and upper body besides, when sitting, a person’s legs and arms may obstruct other body
parts such as the torso or feet.

Table 1: Comparison of our model and baseline methods in terms of MPJPE in millimeters,
computed between the ground truth and estimated poses on Human3.6M under Protocol
#1. The last column displays the average errors, with boldface numbers denoting the best
performance and underlined numbers indicating the second-best performance.

Action

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Liu et al. [5] 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
Zou et al. [25] 49.0 54.5 52.3 53.6 59.2 71.6 49.6 49.8 66.0 75.5 55.1 53.8 58.5 40.9 45.4 55.6
Xu et al. [19] 47.1 52.8 54.2 54.9 63.8 72.5 51.7 54.3 70.9 85.0 58.7 54.9 59.7 43.8 47.1 58.1
Zou et al. [26] 48.4 53.6 49.6 53.6 57.3 70.6 51.8 50.7 62.8 74.1 54.1 52.6 58.2 41.5 45.0 54.9
Quan et al. [12] 47.0 53.7 50.9 52.4 57.8 71.3 50.2 49.1 63.5 76.3 54.1 51.6 56.5 41.7 45.3 54.8
Zou et al. [24] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
Lee et al. [4] 46.8 51.4 46.7 51.4 52.5 59.7 50.4 48.1 58.0 67.7 51.5 48.6 54.9 40.5 42.2 51.7
Zhang et al. [21] 45.0 50.9 49.0 49.8 52.2 60.9 49.1 46.8 61.2 70.2 51.8 48.6 54.6 39.6 41.2 51.6

Ours 40.2 45.8 45.0 46.8 48.6 54.0 42.4 42.1 53.2 66.7 45.6 45.4 48.8 38.4 40.1 46.9

Under Protocol #2, Table 2 shows that our model on average reduces the error by 1.28%
compared to Modulated GCN [24], and achieves better results in 11 out of 15 actions, with
same performance in the action ’phone’. Also, our method outperforms Modulated GCN
on the challenging actions of “Greeting”, “Sitting” and “Smoking”, yielding relative error
reductions of 2%, 4.74% and 5.67%, respectively, in terms of PA-MPJPE. Moreover, our
model performs better than Modulated GCN on the challenging “Photo” action, yielding a
relative error reduction of 2%. In addition, Flex-GCN outperforms High-order GCN [25] by
a relative improvement of 11.67% on average, as well as on all actions.

Table 3: Results on MPI-INF-3DHP.

Method PCK (↑) AUC (↑)
Xu et al. [18] 80.1 45.8
Zeng et al. [20] 82.1 46.2
Lee et al. [4] 81.6 50.3
Zhang et al. [21] 81.1 49.9

Ours 85.2 51.8

Cross-Dataset Results on MPI-INF-3DHP. In
Table 3, We evaluate the generalization ability of
our method by comparing it against strong baselines
using a different dataset. Our model is trained on
Human3.6M and evaluated on MPI-INF-3DHP. Re-
sults demonstrate that our model consistently outper-
forms the baselines, achieving relative improvements
of 1.05% in PCK and 2.9% percent in terms of AUC
metrics in comparison with the best performing baselines. This highlights the strong gener-
alization capability of our model to unseen scenarios and datasets.

Input Modulated GCN Our Prediction Ground Truth

Figure 3: Visual comparison between Flex-GCN, Modulated GCN and ground truth on the Human3.6M test set. our model is able
to produce better predictions compared to Modulated GCN.

High-order GCN [24], HOIF-Net [26], Weight Unsharing [25]
and, Modulated GCN [27] using ground truth. The results
are reported in Table 4, which shows that our model consis-
tently yields better performance than GCN-based approaches
under under both Protocols #1 and #2. Under Protocol #1,
our model outperforms SemGCN, High-order GCN, HOIF-
Net, Modulated GCN, and Weight Unsharing by 4.73mm,
2.11mm, 0.71mm, 0.84mm, and 0.42mm, respectively, resulting
in relative error reductions of 11.22%, 5.34%, 1.86%, 2.20%,
and 1.11%. Under Protocol #2, our model also outperforms
SemGCN, High-order GCN, Modulated GCN, and Weight Un-
sharing by 3.66mm, 1.2mm, 0.19mm, and 0.22mm, with relative
error reductions of 10.91%, 3.86%, 0.63%, and 0.73%, respec-
tively.

4.3 Ablation Study

Impact of Skip Connection. Impact of the weighted initial
skip connection in the layer-wise propagation rule on the model
performance was analyzed and reported, in Table 5. It is evident
that our model benefited from the weighted initial skip connec-
tion, yielding relative error reductions of 6.58% and 4.41% in
terms of MPJPE and PA-MPJPE, respectively.

Impact of Pose Refinement. We also assess the effectiveness
of the pose refinement network. The outcomes presented in
Table 6 indicate that the mean MPJPE and PA-MPJPE errors
are reduced by 3.74mm and 1mm, respectively, highlighting the
benefit of incorporating pose refinement for improved perfor-
mance across both protocols. These results are visualized in
Figure 4, which illustrates the performance contrast with and
without the pose refinement model for various challenging ac-
tions such as ”Eating” and ”Photo” under Protocol #1 (top) and
Protocol #2 (bottom). For instance, the ”Eating” action demon-
strates relative reductions in error of 10.62% and 5.98% in terms
of MPJPE and PA-MPJPE, respectively.

Impact of Symmetrizing Adjacency Modulation. As shown
in Table 7, applying symmetry regularization to the modulated
adjacency modulation matrix decreases the MPJPE and PA-
MPJPE errors by 0.58mm and 0.24mm, respectively.

Impact of Batch/Filter Size. In Figure 5, we investigated how
different batch and filter sizes impact our model’s performance.
Our analysis indicates that a batch size of 512 and a filter size
of 384 result in the optimal performance, as evidenced by the
lowest MPJPE and PA-MPJPE values, respectively.
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