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Abstract

Although graph convolutional networks exhibit promising performance in 3D human
pose estimation, their reliance on one-hop neighbors limits their ability to capture high-
order dependencies among body joints, crucial for mitigating uncertainty arising from
occlusion or depth ambiguity. To tackle this limitation, we introduce Flex-GCN, a flex-
ible graph convolutional network designed to learn graph representations that capture
broader global information and dependencies. At its core is the flexible graph convolu-
tion, which aggregates features from both immediate and second-order neighbors of each
node, while maintaining the same time and memory complexity as the standard convolu-
tion. Our network architecture comprises residual blocks of flexible graph convolutional
layers, as well as a global response normalization layer for global feature aggregation,
normalization and calibration. Quantitative and qualitative results demonstrate the effec-
tiveness of our model, achieving competitive performance on benchmark datasets. Code
is available at: https://github.com/shahjahan0275/Flex-GCN

1 Introduction
The objective of 3D human pose estimation is to predict the 3D positions of body joints
from images or videos. This task is essential for interpreting human movements and actions
in various computer vision applications, including sports performance analytics and pedes-
trian behavior analysis [23]. For instance, accurately identifying skeletal joints is crucial for
assessing sports activities, as it enables a meaningful evaluation of athletes’ performance.

Existing approaches to 3D human pose estimation can generally be categorized into one-
and two-stage methods. One-stage approaches, also known as direct regression techniques,
aim to predict 3D joint locations directly from input images or video frames without interme-
diary steps. However, these methods often face depth ambiguity, where multiple plausible
3D poses can explain the same 2D observations. They also struggle with complex poses
and occlusions [10, 11, 14, 15]. On the other hand, two-stage approaches, also known as
2D-to-3D lifting methods, typically consist of separate stages for joint detection and pose
regression. The first stage detects 2D joint positions in the image, and the second stage uses
these 2D detections to estimate the 3D joint positions. By incorporating an intermediate step
for 2D joint detection, two-stage methods can mitigate challenges such as occlusions and
depth ambiguity, resulting in more robust 3D pose estimations compared to their one-stage
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counterparts. Moreover, they allow for the use of different 2D pose detectors and lifting net-
works, providing flexibility in designing and optimizing each component separately, thereby
potentially leading to higher accuracy [2, 6, 8, 17].

Graph convolutional network (GCN)-based methods have recently demonstrated consid-
erable promise in 3D human pose estimation [5, 21, 22, 24, 26], leveraging the inherent graph
structure of the human body, where joints serve as nodes interconnected by edges represent-
ing skeletal connections. By capitalizing on this representation, GCN-based models can
effectively capture spatial dependencies crucial for accurate pose estimation. While these
methods have demonstrated effectiveness in capturing dependencies between body joints,
they are, however, inherently limited in their ability to model interactions beyond immediate
neighbors. To overcome this challenge, recent approaches have introduced high-order graph
convolutions [4, 12, 25], which enable information propagation through multiple hops in the
graph, allowing the model to gather insights from not only immediate neighbors but also
nodes located farther away. This enhances the model’s capacity to capture global context
and complex relationships between body joints. Another limitation of GCN-based methods
is their inherent reliance on the adjacency matrix, which represents the connectivity between
body joints in a graph, with non-zero entries indicating the presence of connections between
neighboring joints. By modulating the adjacency matrix [24], we can incorporate additional
information from nodes that are further apart in the graph, allowing the model to capture
more complex dependencies and contextual cues.

To address the aforementioned limitations, we propose a novel graph convolutional net-
work, dubbed Flex-GCN, which employs multi-hop neighbors through a flexible scaling
factor that controls the balance between the information from immediate neighbors and the
information from nodes that are at most two edges away in the graph. In addition to inte-
grating an initial residual connection into the update rule of Flex-GCN, we also modulate
the adjacency matrix to enable our model to consider not only the immediate connections
between neighboring joints, but also the spatial relationships between distant joints that may
contribute to the overall pose configuration. Our contributions are summarized as follows:

• We present a flexible graph convolutional network (Flex-GCN), which captures high-
order dependencies essential for reducing uncertainty due to occlusion or depth am-
biguity in 3D human pose estimation. We also theoretically demonstrate the training
stability of Flex-GCN.

• We design a network architecture that includes flexible graph convolutional layers and
a global response normalization layer.

• Experimental results and ablation studies demonstrate the competitive performance of
Flex-GCN against strong baselines on two benchmark datasets.

2 Related Work
3D human pose estimation aims to estimate the 3D coordinates of the joints in the hu-
man body from images or videos. One-stage and two-stage approaches are two common
strategies employed in this task. One-stage methods directly regress the 3D pose from input
images [10, 11, 14, 15], while two-stage methods first predict intermediate representations,
such as 2D joint locations, before lifting them to 3D space [2, 6, 8, 17]. Two-stage meth-
ods, often combined with robust 2D joint detectors, typically exhibit better performance,
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particularly in addressing depth ambiguity challenges. Our proposed method falls under the
category of two-stage approaches, with a network architecture design inspired by the Con-
vNeXt V2 framework [16], which leverages a global response normalization layer.

GCN-based methods for 3D human pose estimation offer an intuitive paradigm by repre-
senting the human body as a graph structure [5, 21, 22, 24, 26], where the joints of the body
serve as nodes and the connections between them represent the bones. This approach lever-
ages the inherent spatial relationships between body parts, allowing for the modeling of com-
plex human poses through graph-based representations. Also, by analyzing the connectivity
patterns within the skeletal graph, GCN-based methods can infer the positions of individ-
ual joints based on information propagated from neighboring nodes, facilitating robust and
contextually informed pose predictions. For instance, SemGCN [22] integrates semantic in-
formation into the graph convolution, allowing the model to combine structural information
from the graph with semantic features derived from the data. In GroupGCN [21], convo-
lutional operations are performed within distinct groups, each of which has its own weight
matrix and spatial aggregation kernel. Weight Unsharing [5] analyzes the trade-offs between
weight sharing and unsharing in GCNs. Modulated GCN [24] combines weight modula-
tion to learn unique modulation vectors for individual nodes and adjacency modulation to
account for additional edges beyond the human skeleton connections. One major limitation
of the standard GCN architecture is that it typically operates with one-hop neighbors, which
can restrict the ability of GCN-based methods to capture long-range dependencies and com-
plex interactions within the graph. In other words, these methods provide a relatively local
perspective of the graph structure, potentially overlooking long-range interactions and intri-
cate dependencies present in human body movements. To mitigate this issue, High-order
GCN [25] incorporates high-order dependencies among body joints by considering neigh-
bors located multiple hops away during the update of joint features. Similarly, multi-hop
Modulated GCN (MM-GCN) [4] involves modulating and fusing features from multi-hop
neighbors. Our proposed model differs from these GCN-based approaches in that we em-
ploy a new update rule for graph node feature propagation that seamlessly integrates both
first- and second-order neighboring information, combined with an initial residual connec-
tion, with the aim of learning graph representations that capture more global information and
dependencies, while maintaining the time and memory complexity of the standard GCN. We
also leverage adjacency modulation to learn additional connections between body joints.

3 Method

3.1 Preliminaries and Problem Statement

Let G = (V,E ,X) be an attributed graph, where V = {1, . . . ,N} is the set of N nodes and
E ⊆ V ×V is the set of edges, and X an N ×F feature matrix of node attributes. We denote
by A an N ×N adjacency matrix whose (i, j)-th entry is equal to 1 if i and j are neighboring
nodes, and 0 otherwise. We also denote by Â=D− 1

2 AD− 1
2 the normalized adjacency matrix,

where D = diag(A1) is the diagonal degree matrix and 1 is a vector of all ones.
Let D = {(xi,yi)}N

i=1 be a training set consisting of 2D joint positions xi ∈ X ⊂ R2

and their associated ground-truth 3D joint positions yi ∈ Y ⊂ R3. The aim of 3D human
pose estimation is to learn the parameters w of a regression model fw : X → Y by finding a
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minimizer of the following objective function

w∗ = argmin
w

1
N

N

∑
i=1

l( fw(xi),yi), (1)

where l( fw(xi),yi) is an empirical regression loss function.

3.2 Flexible Graph Convolutional Network
Central to graph neural networks lies the fundamental concept of the feature propagation
rule, which determines how information is transmitted among nodes in a graph. This rule
entails updating node features by aggregating information from nearby and/or distant neigh-
bors, followed by non-linear activation, to generate an updated node representation. To
this end, we propose a flexible graph convolutional network (Flex-GCN) with the following
layer-wise update rule for node feature propagation:

H(ℓ+1) = σ

(
((1− s)I+ sÂ)ÂH(ℓ)W(ℓ)+XW̃(ℓ)

)
, ℓ= 0, . . . ,L−1, (2)

where s ∈ (0,1) is a positive scaling parameter, W(ℓ) and W̃(ℓ) are learnable weight matrices,
σ(·) is an element-wise activation function, H(ℓ) ∈ RN×Fℓ is the input feature matrix of the
ℓ-th layer with Fℓ feature maps. The input of the first layer is H(0) = X.

The update rule of Flex-GCN is essentially comprised of three main components: (i)
feature propagation that combines the features of the 1- and 2-hop neighbors of nodes (i.e.,
it aggregates information from immediate and high-order neighboring nodes), (ii) feature
transformation that applies learnable weight matrices to the node representations to learn
an efficient representation of the graph, and (iii) residual connection for ensuring that infor-
mation from the initial feature matrix is preserved. The initial residual connection used in
the proposed model allows information from the initial feature matrix to bypass the cur-
rent layer and be directly added to the output of the current layer. This helps preserve
important information that may be lost during the aggregation process, thereby improving
the flow of information through the network. Note that the propagation operation/matrix
P = ((1− s)I+ sÂ)Â of our model is a weighted combination of the normalized adjacency
matrix and its square. It allows Flex-GCN to capture information from nodes that are not
only directly connected (1-hop), but also incorporates information from the neighbors of the
neighbors (2-hop). The parameter s helps control the balance between the information from
immediate neighbors and the information from nodes that are at most two edges away in
the graph. This is particularly valuable for learning graph representations that capture more
global information and dependencies.

Model Complexity. For simplicity, we assume the feature dimensions are the same
across all layers, i.e., Fℓ = F for all ℓ, with F ≪ N. Multiplying the propagation matrix
((1− s)I+ sÂ)Â with an embedding H(ℓ) costs O(∥Â∥0F) in time, where ∥Â∥0 denotes
the number of non-zero entries of the sparse matrix Â (i.e., number of edges in the graph).
Multiplying an embedding with a weight matrix costs O(NF2). Also, multiplying the ini-
tial feature matrix by the residual connection weight matrix costs O(NF2). Hence, the time
complexity of an L-layer Flex-GCN is O(L∥Â∥0F + LNF2). For memory complexity, an
L-layer Flex-GCN requires O(LNF + LF2) in memory, where O(LNF) is for storing all
embeddings and O(LF2) is for storing all layer-wise weight matrices. Therefore, our pro-
posed Flex-GCN model has the same time and memory complexity as that of GCN, albeit
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Flex-GCN takes into account both immediate and distant graph nodes for improved learned
node representations. It is important to note that there is no need to explicitly compute the
square of the normalized adjacency matrix in the Flex-GCN model. Instead, we perform
right-to-left multiplication of the normalized adjacency matrix with the embedding. This
process avoids the computational cost associated with matrix exponentiation and simplifies
the computation, making our model more efficient while achieving its objectives.

Numerical Stability. To demonstrate the numerical stability of the proposed Flex-GCN
model, we start with a useful result in matrix analysis [13], which states that the spectral
radius of the sum of two commuting matrices is bounded by the sum of the spectral radii of
the individual matrices.

Lemma 1. If two matrices M1 and M2 commute, i.e., M1M2 = M2M1, then

ρ(M1 +M2)≤ ρ(M1)+ρ(M2), (3)

where ρ(·) denotes matrix spectral radius (i.e., largest absolute value of all eigenvalues).

Since the eigenvalues of the normalized Laplacian matrix L = I− Â lie in the interval
[0,2], it follows that ρ(Â)≤ 1. Hence, we have the following result, which demonstrates the
training stability of the proposed model, with information smoothly propagating through the
graph layers without amplifying or dampening effects that could lead to instability.

Proposition 1. The update rule of Flex-GCN is numerically stable.

Proof. Recall that the propagation matrix of Flex-GCN is given by

P = ((1− s)I+ sÂ)Â = (1− s)Â+ sÂ2. (4)

Since the matrices (1− s)Â and sÂ2 satisfy the assumptions of Lemma 1, we have

ρ((1− s)Â+ sÂ2)≤ ρ((1− s)Â)+ρ(sÂ2)≤ 1, (5)

because both ρ(Â) and ρ(Â2) are bounded by 1. Hence, the spectral radius of the propaga-
tion matrix is bounded by 1. Consequently, repeated layer-wise application of this propaga-
tion operator is stable.

Adjacency Modulation. We modulate the normalized adjacency matrix to capture not just
the interactions between adjacent nodes, but also the relationships between distant nodes
beyond the natural connections of body joints [24], yielding a modulated adjacency matrix
Ǎ = Â+Q, where Q ∈RN×N is a learnable adjacency modulation matrix. Since the skeleton
graph exhibits symmetry, we ensure symmetry in the learnable adjacency modulation matrix
by averaging it with its transpose.

Model Architecture. The overall architecture of our proposed Flex-GCN model is illus-
trated in Figure 1. The input to the model is a 2D pose, typically obtained via an off-the-shelf
2D detector [1], which subsequently undergoes a flexible graph convolutional layer, fol-
lowed by a GELU activation function. Following the architectural design of the ConvNeXt
V2 block [7], our residual block consists of three flexible graph convolutional (Flex-GConv)
layers. In each block, the first two convolutional layers are followed by layer normalization,
while the third one is followed by GELU. This residual block is repeated four times. Then,
a global response normalization (GRN) layer [16] is applied after the residual blocks with
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Figure 1: Network architecture of Flex-GCN for 3D human pose estimation.

the aim of increasing the contrast and selectivity of channels. Finally, the last flexible graph
convolutional layer of the network generates the 3D pose.

Model Prediction. The output of the last flexible graph convolutional layer contains the
final output node embeddings, ŷi, i = 1, . . . ,N, which are the predicted 3D pose coordinates.

Model Training. The parameters (i.e., weight matrices for different layers) of Flex-GCN
are learned by minimizing the following loss function

L=
1
N

[
(1−α)

N

∑
i=1

∥yi − ŷi∥2
2 +α

N

∑
i=1

∥yi − ŷi∥1

]
, (6)

which is a weighted sum of the mean squared and mean absolute errors between the 3D
ground truth coordinates yi and estimated 3D joint coordinates ŷi over N training body joints.
The weighting factor α ∈ [0,1] controls the contribution of each error term.

4 Experiments

4.1 Experimental Setup
Datasets. We assess Flex-GCN performance on Human3.6M [3] and MPI-INF-3DHP [9].

Evaluation Protocols and Metrics. We employ two standard evaluation protocols for
training and testing on Human 3.6M designated as Protocol #1 and Protocol #2 [8], with
associated metrics mean per-joint position error (MPJPE) and Procrustes-aligned mean per-
joint position error (PA-MPJPE), respectively. For MPI-INF-3DHP, we use the Area Under
Curve (AUC) and Percentage of Correct Keypoint (PCK) as assessment metrics.

Baselines. We compare the performance of our model with several state-of-the-art meth-
ods for 3D pose estimation, including Weight Unsharing [5], High-order GCN [25], Pose
Grammar and and Data Augmentation [19], Compositional GCN (CompGCN) [26], Higher-
Order Implicit Fairing (HOIF-Net) [12], Multi-hop Modulated GCN (MM-GCN) [4], Group
GCN [21], and Modulated GCN [24].

Implementation Details. All experiments are performed on a Linux machine with a sin-
gle NVIDIA GeForce RTX A4500 GPU featuring 20GB of memory. We use PyTorch to
implement our model and train it for 30 epochs using AMSGrad optimizer on detected 2D
poses [1], as well as on ground truth 2D poses. The initial learning rate is set to 0.001, with
a decay factor of 0.99 every four epochs, a batch size of 512, and F = 384. The scaling
parameter s = 0.2 and the weighting factor α = 0.03 are determined via grid search. To
prevent overfitting, we apply dropout with a factor of 0.2 after each graph convolution layer.
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4.2 Results and Analysis

Quantitative Results on Human3.6M. In Tables 1 and 2, we report the performance com-
parison of our Flex-GCN model and strong baselines for 3D pose estimation on Human3.6M
using the detected 2D pose as input. In both tables, we present the results for all 15 actions,
along with their average performance. Table 1 shows that Flex-GCN yields competitive
performance, with average MPJPE and PA-MPJPE errors of 46.9mm and 38.6mm, respec-
tively. Under Protocol #1, Table 1 reveals that Flex-GCN performs better than Modulated
GCN [24] in 14 out of 15 actions, yielding 2.5mm error reduction on average, improving
upon this best performing baseline by a relative improvement of 5.08%. Our model achieves
better predictions than the best baseline on challenging actions like hard poses involving ac-
tivities of self-occlusion such as “Eating”, “Sitting” and “Smoking”, showing relative error
reductions of 1.53%, 7.47% and 8.24%, respectively, in terms of MPJPE. The presence of
self-occlusions during activities can pose challenges for human pose estimation, as they re-
strict the model’s access to observable information. For instance, some activities like eating
or smoking can lead to occlusions where a person’s hands and arms obstruct parts of their
face and upper body besides, when sitting, a person’s legs and arms may obstruct other body
parts such as the torso or feet.

Table 1: Comparison of our model and baseline methods in terms of MPJPE in millimeters,
computed between the ground truth and estimated poses on Human3.6M under Protocol
#1. The last column displays the average errors, with boldface numbers denoting the best
performance and underlined numbers indicating the second-best performance.

Action

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Liu et al. [5] 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
Zou et al. [25] 49.0 54.5 52.3 53.6 59.2 71.6 49.6 49.8 66.0 75.5 55.1 53.8 58.5 40.9 45.4 55.6
Xu et al. [19] 47.1 52.8 54.2 54.9 63.8 72.5 51.7 54.3 70.9 85.0 58.7 54.9 59.7 43.8 47.1 58.1
Zou et al. [26] 48.4 53.6 49.6 53.6 57.3 70.6 51.8 50.7 62.8 74.1 54.1 52.6 58.2 41.5 45.0 54.9
Quan et al. [12] 47.0 53.7 50.9 52.4 57.8 71.3 50.2 49.1 63.5 76.3 54.1 51.6 56.5 41.7 45.3 54.8
Zou et al. [24] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
Lee et al. [4] 46.8 51.4 46.7 51.4 52.5 59.7 50.4 48.1 58.0 67.7 51.5 48.6 54.9 40.5 42.2 51.7
Zhang et al. [21] 45.0 50.9 49.0 49.8 52.2 60.9 49.1 46.8 61.2 70.2 51.8 48.6 54.6 39.6 41.2 51.6

Ours 40.2 45.8 45.0 46.8 48.6 54.0 42.4 42.1 53.2 66.7 45.6 45.4 48.8 38.4 40.1 46.9

Under Protocol #2, Table 2 shows that our model on average reduces the error by 1.28%
compared to Modulated GCN [24], and achieves better results in 12 out of 15 actions, with
same performance in the action ’phone’. Also, our method outperforms Modulated GCN
on the challenging actions of “Greeting”, “Sitting” and “Smoking”, yielding relative error
reductions of 2%, 4.74% and 5.67%, respectively, in terms of PA-MPJPE. Moreover, our
model performs better than Modulated GCN on the challenging “Photo” action, yielding a
relative error reduction of 2%. In addition, Flex-GCN outperforms High-order GCN [25] by
a relative improvement of 11.67% on average, as well as on all actions.

Qualitative Results. Figure 2 displays the visual results obtained by Flex-GCN on sample
actions from the Human3.6M dataset. The effectiveness of our model is demonstrated by the
close alignment between the predicted 3D poses and the ground truth, as shown in Figure 2.
Compared to Modulated GCN, our model generates poses that closely resemble the ground
truth, even in hard poses with self-occlusions.
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Table 2: Comparison of our model and baseline methods in terms of PA-MPJPE, computed
between the ground truth and estimated poses on Human3.6M under Protocol #2.

Action

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Liu et al. [5] 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2
Zou et al. [25] 38.6 42.8 41.8 43.4 44.6 52.9 37.5 38.6 53.3 60.0 44.4 40.9 46.9 32.2 37.9 43.7
Xu et al. [19] 36.7 39.5 41.5 42.6 46.9 53.5 38.2 36.5 52.1 61.5 45.0 42.7 45.2 35.3 40.2 43.8
Zou et al. [26] 38.4 41.1 40.6 42.8 43.5 51.6 39.5 37.6 49.7 58.1 43.2 39.2 45.2 32.8 38.1 42.8
Quan et al. [12] 36.9 42.1 40.3 42.1 43.7 52.7 37.9 37.7 51.5 60.3 43.9 39.4 45.4 31.9 37.8 42.9
Zou et al. [24] 35.7 38.6 36.3 40.5 39.2 44.5 37.0 35.4 46.4 51.2 40.5 35.6 41.7 30.7 33.9 39.1
Lee et al. [4] 35.7 39.6 37.3 41.4 40.0 44.9 37.6 36.1 46.5 54.1 40.9 36.4 42.8 31.7 34.7 40.3
Zhang et al. [21] 35.3 39.3 38.4 40.8 41.4 45.7 36.9 35.1 48.9 55.2 41.2 36.3 42.6 30.9 33.7 40.1

Ours 34.1 38.0 36.8 39.7 39.2 43.6 33.4 34.5 44.2 57.1 38.3 36.0 41.0 29.9 33.1 38.6

Input Modulated GCN Our Prediction Ground Truth

Figure 3: Visual comparison between Flex-GCN, Modulated GCN and ground truth on the Human3.6M test set. our model is able
to produce better predictions compared to Modulated GCN.

High-order GCN [24], HOIF-Net [26], Weight Unsharing [25]
and, Modulated GCN [27] using ground truth. The results
are reported in Table 4, which shows that our model consis-
tently yields better performance than GCN-based approaches
under under both Protocols #1 and #2. Under Protocol #1,
our model outperforms SemGCN, High-order GCN, HOIF-
Net, Modulated GCN, and Weight Unsharing by 4.73mm,
2.11mm, 0.71mm, 0.84mm, and 0.42mm, respectively, resulting
in relative error reductions of 11.22%, 5.34%, 1.86%, 2.20%,
and 1.11%. Under Protocol #2, our model also outperforms
SemGCN, High-order GCN, Modulated GCN, and Weight Un-
sharing by 3.66mm, 1.2mm, 0.19mm, and 0.22mm, with relative
error reductions of 10.91%, 3.86%, 0.63%, and 0.73%, respec-
tively.

4.3 Ablation Study

Impact of Skip Connection. Impact of the weighted initial
skip connection in the layer-wise propagation rule on the model
performance was analyzed and reported, in Table 5. It is evident
that our model benefited from the weighted initial skip connec-
tion, yielding relative error reductions of 6.58% and 4.41% in
terms of MPJPE and PA-MPJPE, respectively.

Impact of Pose Refinement. We also assess the effectiveness
of the pose refinement network. The outcomes presented in
Table 6 indicate that the mean MPJPE and PA-MPJPE errors
are reduced by 3.74mm and 1mm, respectively, highlighting the
benefit of incorporating pose refinement for improved perfor-
mance across both protocols. These results are visualized in
Figure 4, which illustrates the performance contrast with and
without the pose refinement model for various challenging ac-
tions such as ”Eating” and ”Photo” under Protocol #1 (top) and
Protocol #2 (bottom). For instance, the ”Eating” action demon-
strates relative reductions in error of 10.62% and 5.98% in terms
of MPJPE and PA-MPJPE, respectively.

Impact of Symmetrizing Adjacency Modulation. As shown
in Table 7, applying symmetry regularization to the modulated
adjacency modulation matrix decreases the MPJPE and PA-
MPJPE errors by 0.58mm and 0.24mm, respectively.

Impact of Batch/Filter Size. In Figure 5, we investigated how
different batch and filter sizes impact our model’s performance.
Our analysis indicates that a batch size of 512 and a filter size
of 384 result in the optimal performance, as evidenced by the
lowest MPJPE and PA-MPJPE values, respectively.

9

Figure 2: Visual comparison between Flex-GCN and Modulated GCN on sample actions
from the Human3.6M dataset.

Table 3: Results on MPI-INF-3DHP.

Method PCK (↑) AUC (↑)

Xu et al. [18] 80.1 45.8
Zeng et al. [20] 82.1 46.2
Lee et al. [4] 81.6 50.3
Zhang et al. [21] 81.1 49.9

Ours 85.2 51.8

Cross-Dataset Results on MPI-INF-3DHP. In
Table 3, We evaluate the generalization ability of
our method by comparing it against strong baselines
using a different dataset. Our model is trained on
Human3.6M and evaluated on MPI-INF-3DHP. Re-
sults demonstrate that our model consistently outper-
forms the baselines, achieving relative improvements
of 1.05% and 2.9% in terms of PCK and AUC met-
rics, respectively, in comparison with the best performing baselines. This highlights the
strong generalization capability of our model to unseen scenarios and datasets.
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Ground Truth Results and Runtime Analysis. Table 4 (left) shows that our model con-
sistently yields better performance than the baselines under both Protocols #1 and #2 on the
Human3.6M dataset using the ground truth 2D pose as input. This comparison highlights the
efficacy of our model in leveraging ground truth 2D poses to generate more accurate 3D pose
estimates. In addition to evaluating the accuracy and effectiveness of Flex-GCN, we conduct
an analysis of its inference time to assess the efficiency of our approach in processing and
generating outputs. The results of the inference time analysis are presented in Table 4 (right),
where the computational performance of our Flex-GCN model is compared against that of
strong baseline methods. Notably, our model demonstrates significantly improved inference
time compared to the baseline methods, highlighting its computational efficiency.

Table 4: Left: Performance comparison of our model and baselines on Human3.6M using
the ground truth 2D pose as input. Right: Runtime analysis.

Method MPJPE (↓) PA-MPJPE (↓)

SemGCN [22] 42.14 33.53
High-order GCN [25] 39.52 31.07
Modulated GCN [24] 38.25 30.06
Weight Unsharing [5] 37.83 30.09

Ours 37.41 29.87

Method Inference Time

High-Order GCN [25] .013s
Weight Unsharing [5] .032s
MM-GCN [4] .009s
Modulated GCN [24] .010s

Ours 0.06s

4.3 Ablation Study

Effect of Batch and Filter Size. In Figure 3, we analyze the impact of varying batch and
filter sizes on our model’s performance. This analysis is crucial as both parameters play a
significant role in the training efficiency and the overall accuracy of the model. Batch size
directly influences the stability and speed of the training process. Smaller batch sizes can
lead to noisier gradient estimates but allow for more frequent updates, potentially improving
generalization. Larger batch sizes, on the other hand, provide more stable gradient estimates
but require more memory and can lead to slower convergence. Filter size, which determines
the number of learnable parameters in each layer of the network, affects the model’s capacity
to capture complex patterns. A larger filter size increases the model’s ability to learn intricate
features but also raises the risk of overfitting. Conversely, a smaller filter size may lead to
underfitting. Our analysis indicates that a batch size of 512 and a filter size of 384 result in
the best performance. This combination yields the lowest MPJPE and PA-MPJPE values,
respectively, signifying that the model is accurately estimating 3D human poses. The batch
size of 512 strikes a balance between gradient stability and update frequency, while the filter
size of 384 provides a sufficient number of parameters to learn detailed features without
overfitting.

Effect of Residual Connection and Modulation Symmetry. We analyze the impact of
the initial residual connection (IRC) in the layer-wise propagation rule on our model perfor-
mance, and the results are reported in Table 5 (left). The inclusion of IRC shows significant
improvements, with relative error reductions of 6.58% and 4.41% in terms of MPJPE and PA-
MPJPE, respectively. This demonstrates the effectiveness of IRC in enhancing our model’s
accuracy. By preserving and reinforcing the initial node features throughout the layers, IRC
facilitates more stable and effective learning, ensuring that essential positional information
is maintained and utilized in subsequent layers.
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Figure 3: Performance of our proposed Flex-GCN model on the Human3.6M dataset using
varying batch and filter sizes.

Furthermore, we assess the effect of symmetrizing the learnable adjacency modulation
matrix on model performance. The results, presented in Table 5 (right), indicate that intro-
ducing symmetry into the adjacency modulation process yields tangible reductions in both
MPJPE and PA-MPJPE. Specifically, the MPJPE error decreased by 0.58mm and the PA-
MPJPE error decreased by 0.24mm, compared to the configuration without symmetry. This
improvement highlights the advantage of leveraging skeleton graph symmetry to enhance
the precision of our model’s estimations. By ensuring that the relational information be-
tween joints is consistently balanced, the symmetric adjacency modulation matrix enables
more accurate and reliable pose estimations. This approach not only refines the positional
accuracy of individual joints but also improves the overall coherence of the estimated poses,
demonstrating the critical role of structured graph modulation in 3D human pose estimation.

Table 5: Effect of initial residual connection (IRC) and symmetry of modulation adjacency.

Method MPJPE (↓) PA-MPJPE (↓)

Without IRC 39.76 31.25
With IRC 37.41 29.87

Method MPJPE (↓) PA-MPJPE (↓)

Without Symmetry 37.99 30.11
With Symmetry 37.41 29.87

5 Conclusion

We introduced a simple yet efficient Flex-GCN model, which captures high-order depen-
dencies essential for reducing uncertainty due to occlusion or depth ambiguity in 3D human
pose estimation. We also theoretically demonstrated the training stability of Flex-GCN.
Experimental results demonstrate that our model outperforms competitive baselines on stan-
dard datasets for 3D human pose estimation. Furthermore, our exploration of adjacency
modulation enables Flex-GCN to incorporate richer contextual information beyond the nat-
ural connections of body joints, leading to enhanced performance in challenging scenarios.
Through ablation studies, we have elucidated the contributions of various design choices,
such as the initial residual connection and symmetry of modulation adjacency, highlighting
their positive impact on model performance. For future work, we intend to apply our model
to a broader range of computer vision and graph representation learning tasks.
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