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A Impact of φ(d) regularization
In order to evaluate the impact of the regularization introduced in Equation 6 we perform
an experimental study of varying the value of the φ(d) parameter. Since we use a constant
regularization defined as φ(d) = λ × d, we vary the value of the λ parameter in the range
[0,2].

B Impact of the bias a

The bias a in Equation 6 acts on the radius of each horosphere. We experiment with disabling
the bias parameter in order to evaluate its impact on the final performance of the model. As
can be seen in Table 1, the bias provides in 2 dimensions an increase in performance but
seems to be of less importance for higher dimensions.

C Radius of an Horosphere
Given an horosphere parameterized by an ideal prototype p ∈ Sd−1 and a bias a ∈R. We can
compute the radius of the said horosphere. Remember that horospheres in the Poincaré ball
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Figure 1: Evolution of the accuracy when moving the λ regularisation parameter. We ob-
serve that varying the value of the parameter has little impact on the resulting performance.

Table 1: Performance when enabling or disabling biases during training of horospherical
classifiers on the CUB dataset.

Method Bias Dimensions
2 3 4 50

Horospherical - Smart 34.4±6.2 56.4±0.8 56.0±0.4 57.5±0.2
Horospherical - Smart ✓ 38.7±4.3 56.4±1.6 56.3±0.8 56.6±0.6

model are hyperspheres tangent to the boundary of the ball. To compute the radius dependent
on a, we will find the two points of the horosphere which are located on the Poincaré ball
radius, one of this point is p, and we refer to the other one as x. By taking p as our first base
vector, x has a single non-null dimension x0.
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Figure 2: The position of x along the vector p is x0.
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We find the roots for this polynomial:

∆ = (−2)2 −4(1− exp(a))(1+ exp(a)) (10)
= 4−4(1− exp(2a)) (11)
= 4exp(2a). (12)
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Therefore, the radius of an horosphere with a bias term a is:

r(a) =
1+ tanh(a/2)

2
. (19)

D Hierarchies
In this section, we include the hierarchies used for positioning prototypes in our experiments
on different datasets. For large hierarchies, we do not include the label of nodes for readabil-
ity purpose. The nodes are coloured following the topological sort of the tree.
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Figure 3: CIFAR10 Hierarchy.



6 BERG ET AL.: HOROSPHERICAL LEARNING WITH SMART PROTOTYPES

Figure 4: CIFAR100 Hierarchy.
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Figure 5: CUB200 Hierarchy.
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Figure 6: NuScenes Hierarchy.
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Figure 7: Cityscapes Hierarchy.


