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A Derivation of the Upper Bound of Mutual Information
The interaction information[3] among X, f;; and f; is represented as follows:

I(fais fas:X) = I(fais fas) — I(fais fas|X) = I(faisX) — I(faisX| fas)- (1)

Therefore, the mutual information between f;; and f;; can be expressed as:

I(fais fas) = 1(faisx) — I (faisx

fas) F1(fais fas|X). 2

We have I(x; fy;, fus) = I(X; fus5) +1(X; fuil fas) according to the chain rule of mutual infor-
mation, and hence the second term of Equation 2 is expressed as:

I(X; fail fas) = 1(X: fai, fas) — 1(X; fus)- 3)

Since f; is independent of fq, the posterior distribution satisfies: g(fzi|x) = q(fuilX, fus)s
and then we have: H(fy|x) = H(fui|X, f4s), where H(-) denotes the information entropy.
Therefore, we can write the third term of Equation 2 as:

I(fais fas|X) = H(fai|x) — H(failX, fas) = 0. 4)

By applying Equation 3 and Equation 4, we can rewrite Equation 2 as:

I(fais fas) = 1(X: fai) — I(X: fail fas)

5
I(X; fai) +1(xX; fas) —1(X; fais fas)- ©)

However, directly minimizing Equation 5 is intractable, so we need to minimize its vari-
ational upper bound. Specifically, we need to obtain the variational upper bound of I(x; fz;)
and I(x; fys), as well as the variational lower bound of I(x; f4i, fas). When x is an input
data, and fy; is a feature, similar to VIB[1], we can construct a tractable variational upper
bound of I(x; fz;) by introducing the variational approximation r( f;;) to approximate the true
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marginal p(fy;).

I failx) |
1(X; fai) = Epx 1) _lo plg(;d;()_
p(X,fai) _IOg r(fdi)p(fdi) ©
[ P(falx)]
— Eyup |log ((];cid;‘)_ —KL(p(fai)llr(fai)

<E,x K ((fdz|X)|| (fai)]-

Likewise, by introducing the variational approximation r(fyy), the upper bound of I(x; fy5)
can be expressed as:

_ i
(X fds) = Ep(x.fas) log pls(;d:)()]
—Ep(x,fds) _log r(fai)p(fai) @
[ P(fy
= Ep(x,fy) _log fﬁdl?)} Rl

< Ep [KL(p(fas|X)[[r(fas)] -

For the variational lower bound of I(x; fy;, f4s), since conditional distributions p(X|fzi, fus)
is intractable, we leverage the variational approximation ¢ (x| fy;, fus) to approximate p(X|fy;, fis)
similar to ITAE [2], so the lower bound of I(X; fy;, fas) is expressed as:

10 fais fas) = Ept. ot [10g’W]

xS fas) 108 G(X| fais fas)| + Ep( . p4) [KL(P (X[ fais fas)||g (X fais fas))] + H(X)
. fas) 1108 G(X| fai, fas)] +H (X)

= Ep(x.,fd,-ﬁf'ds) [logg
= Epix, fui.fus) 1089

X| fai fus
X| fai fus

+ Exp(x) logp(x)

( )]
( )N+C,

(3)
where C is a constant. And then we use g(fy;]x) and g(fzs|x) to be the approximation of
p(failx) and p(fys|x), respectively, so we have:

Ep(x.faifas) 1084 (X fais fas)] = Epi)plfa) p(fas o) 108 (X fai, fas)]
= Ep)Eq(fuwatast 10g 4 (X fai, fas)1]-

In summary, the upper bound of mutual information between f;; and f;; can be written

as: I(fais fas) < Epp [KL(q(failX)|[r(fai)) + KL(g(fas|x) |17 (fas))]
+ Ep) [Eg  fux)q s bo 102G (x| faiy fas)]]-

®

(10)
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