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1 More Experiments

1.1 COCO Object Detection using RetinaNet
We report COCO RetinaNet object detection in Table 1. Similar to Mask R-CNN, whose
results are reported in the main paper, PlainMamba also performs well with the single-stage
RetinaNet object detector. For example, with only half the model size and similar FLOPs,
PlainMamba-L1 achieves 0.2 higher AP than Swin-Tiny.

1.2 Ablation Studies and Discussions
Setting: Here, we conduct ablation studies to test our model designs and to gain a deeper
understanding of the proposed method. We use our L1 model, with less than 10M parameters,
for most experiments. The models are all pre-trained on ImageNet-1K following the same
training settings described in the main paper.

Depth v.s. Width When designing neural architectures for a given parameter count, it’s
usually important to find a good balance between the network’s depth, i.e., the number of
layers, and its width, i.e., the feature dimensions. While this problem was studied for existing
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Table 1: RetinaNet object detection on MS COCO mini-val with 1× schedule. FLOPs are computed
using input size 1280×800.

Backbone Hierarchical Params FLOPs APbb APbb
50 APbb

75
CNN
ResNeXt101-32x4d [7] ✓ 56M 319G 39.9 - -
ResNeXt101-64×4d [7] ✓ 95M 413G 41.0 - -
Transformer
Swin-Tiny [2] ✓ 38M 245G 41.5 - -
Swin-Small [2] ✓ 60M 335G 44.5 - -
Focal-Tiny [9] ✓ 39M 265G 43.7 - -
Focal-Small [9] ✓ 62M 367G 45.6 - -
PVT-Small [5] ✓ 34M - 40.4 61.3 43.0
PVT-Medium [5] ✓ 54M - 41.9 63.1 44.3
PVT-Large [5] ✓ 71M - 42.6 63.7 45.4
State Space Modeling
EfficientVMamba-T [3] ✓ 13M - 37.5 57.8 39.6
EfficientVMamba-S [3] ✓ 19M - 39.1 60.3 41.2
EfficientVMamba-B [3] ✓ 44M - 42.8 63.9 45.8
PlainMamba-Adapter-L1 ✗ 19M 250G 41.7 62.1 44.4
PlainMamba-Adapter-L2 ✗ 40M 392G 43.9 64.9 47.0
PlainMamba-Adapter-L3 ✗ 67M 478G 44.8 66.0 47.9

Table 2: Ablation study of model depth v.s. width on ImageNet-1K..
Depth Width Params FLOPs Top-1

6 376 7.3 M 2.5 G 74.6
12 272 7.5 M 2.7 G 76.8
24 192 7.3 M 3.0 G 77.9
36 156 7.2 M 3.3 G 77.9

architectures [6, 8], it is still unclear whether the previous conclusions are applicable to vision
SSMs. In Table 2, we study the depth and width trade-off of the proposed PlainMamba.
Firstly, the results show that deeper models tend to perform better than shallow ones. For
example, when the parameter count is around 7.4M, the 12-layer model achieves 2.2% higher
ImageNet top-1 accuracy than the 6-layer counterparts, and the 24-layer model is further
1.1% higher than the 12-layer one. However, when we further increase the depth to 36 while
reducing the width accordingly, the top-1 accuracy remains similar. On the other hand, we
also notice that deeper models are less efficient than shallower but wider models. For instance,
the 24-layer model is 0.3G FLOPs higher than the 12-layer model. These results suggest the
necessity of a good balance between network depth and width.

Table 3: Ablation study of model depth v.s. width
on ImageNet-1K.

Method Params FLOPs Top-1
VisionMamba [10] 7.8M 1.3G 74.4
VMamba [1] 7.3M 3.0G 77.1
Ours 7.3M 3.0G 77.9

PlainMamba Block Design. Here, we test
different designs of the PlainMamba block
by comparing it with the block designs in
Vision Mamba [10] and VMamba [1]. For
a fair comparison, we use the same model
depth and width settings for all designs
and train all models with the same training
recipe. We also remove the CLS tokens from
the Vision Mamba [10] block and use the global averaging pooling as an alternative. We
report the results in Table 3. We can see that our design achieves the best results. Specifically,
Vision Mamba only achieves a 74.4% ImageNet accuracy, which is 3.5% lower than ours. We
also notice that the model with a Vision Mamba block is inferior to the original Vision Mamba

Citation
Citation
{Xie, Girshick, Doll{á}r, Tu, and He} 2017

Citation
Citation
{Xie, Girshick, Doll{á}r, Tu, and He} 2017

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Yang, Li, Zhang, Dai, Xiao, Yuan, and Gao} 2021

Citation
Citation
{Yang, Li, Zhang, Dai, Xiao, Yuan, and Gao} 2021

Citation
Citation
{Wang, Xie, Li, Fan, Song, Liang, Lu, Luo, and Shao} 2021

Citation
Citation
{Wang, Xie, Li, Fan, Song, Liang, Lu, Luo, and Shao} 2021

Citation
Citation
{Wang, Xie, Li, Fan, Song, Liang, Lu, Luo, and Shao} 2021

Citation
Citation
{Pei, Huang, and Xu} 2024

Citation
Citation
{Pei, Huang, and Xu} 2024

Citation
Citation
{Pei, Huang, and Xu} 2024

Citation
Citation
{Wu, Shen, and Van Denprotect unhbox voidb@x protect penalty @M  {}Hengel} 2019

Citation
Citation
{Xue, Shi, Wei, Lou, Liu, and You} 2022

Citation
Citation
{Zhu, Liao, Zhang, Wang, Liu, and Wang} 2024

Citation
Citation
{Liu, Tian, Zhao, Yu, Xie, Wang, Ye, and Liu} 2024

Citation
Citation
{Zhu, Liao, Zhang, Wang, Liu, and Wang} 2024

Citation
Citation
{Liu, Tian, Zhao, Yu, Xie, Wang, Ye, and Liu} 2024

Citation
Citation
{Zhu, Liao, Zhang, Wang, Liu, and Wang} 2024



YANG ET AL.: PLAINMAMBA (SUPPLEMENTARY MATERIALS) 3

128 256 512 1024 2048 4096
Input Size

100

101

102

103

104

Lo
g-

sc
al

e 
FL

OP
s (

G)

DeiT-C224
PlainMamba-L1

128 256 512 1024 2048 4096
Input Size

102

103

104

OOM

Lo
g-

sc
al

e 
Pe

ak
 M

em
or

y 
(M

b)

DeiT-C224
PlainMamba-L1

Figure 1: Efficiency comparison between PlainMamba and DeiT. We modify the DeiT-Tiny model by
changing its channel number to 224, resulting in a similar-size model (7.4M) to PlainMamba-L1. The
peak memory is measured using a batch size of 1.

model, which is caused by the removal of the CLS token. These results suggest that our model
still retains its ability when the CLS token is absent. Also, our design performs better than the
VMamba block [1] with a 0.8% accuracy advantage, indicating that the improvements come
from our proposed Continuous 2D Scanning and Direction-aware Updating, which validate
the effectiveness of our proposed techniques in adapting SSM for 2D images.

Table 4: Comparison of decomposed FLOPs be-
tween DeiT and PlainMamba.

Resolution Part DeiT-C224 PlainMamba-L1

128×128
Token Mixing 0.18G 0.34G

Channel Mixing 0.31G 0.33G
Others 0.01G 0.30G

4096×4096
Token Mixing 23244G 350G

Channel Mixing 315G 348G
Others 12G 311G

Efficiency Comparison with ViT One par-
ticular advantage of SSMs, e.g., Mamba, is
their ability to capture global information
while maintaining efficiency. in Figure 1, we
compare the PlainMamba’s efficiency with
the vision transformer. Specifically, to en-
sure a fair comparison, we create a DeiT
model with channel numbers of 224, result-
ing in a model with 7.4M parameters, which
is used to compare with PlainMamba-L1.
Specifically, we compare the model FLOPs and the peak inference memory using inputs of
different sizes. The results show that our model is able to keep the computation cost low when
the input size is scaled up to high resolutions, e.g., 4096×4096. However, DeiT’s FLOPs and
memory consumption increase rapidly when using such high-resolution inputs. On the other
hand, we also notice that our model’s efficiency is inferior to the similar-sized DeiT when
using low-resolution images, e.g., 128×128. To further investigate such a difference in their
efficiency, we decompose their FLOPs into three parts [4]: 1) token mixing, 2) channel mixing,
and 3) others. Specifically, token mixing refers to the multi-head attention part in DeiT and
the selective scanning part in PlainMamba, and channel mixing refers to the feed-forward
network in DeiT and the input & output projection in PlainMamba. We report the results in
Table 4. These suggest that PlainMamba’s FLOPs are evenly distributed across the three parts
in low and high resolutions. On the contrary, when using 128×128 inputs, DeiT’s FLOPs are
dominated by channel-mixing and the other two parts are negligible. However, because of the
quadratic complexity of self-attention operation, DeiT’s FLOPs in token mixing grow to 23T
when using 4096×4096 inputs, 23 times more expensive than PlainMamba. These results
verify PlainMamba’s high efficiency for high-resolution inputs.
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