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Abstract

We present PlainMamba: a simple non-hierarchical state space model (SSM) designed
for general visual recognition. The recent Mamba model has shown how SSMs can
be highly competitive with other architectures on sequential data and initial attempts
have been made to apply it to images. In this paper, we further adapt the selective
scanning process of Mamba to the visual domain, enhancing its ability to learn features
from two-dimensional images by (i) a continuous 2D scanning process that improves
spatial continuity by ensuring adjacency of tokens in the scanning sequence, and (ii)
direction-aware updating which enables the model to discern the spatial relations of tokens
by encoding directional information. Our architecture is designed to be easy to use and
easy to scale, formed by stacking identical PlainMamba blocks, resulting in a model with
constant width throughout all layers. The architecture is further simplified by removing the
need for special tokens. We evaluate PlainMamba on a variety of visual recognition tasks,
achieving performance gains over previous non-hierarchical models and is competitive
with hierarchical alternatives. For tasks requiring high-resolution inputs, in particular,
PlainMamba requires much less computing while maintaining high performance. Code
and models are available at: https://github.com/ChenhongyiYang/PlainMamba.

1 Introduction
Developing high-performing visual encoders has always been one of the most important
goals in computer vision [22, 23, 38, 60, 75, 82, 96]. With high-quality visual features, a
broad range of downstream tasks, such as semantic segmentation [11, 86, 95, 107], object
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Figure 1: While hierarchical visual encoders may demonstrate superior accuracy on open-source visual recognition
benchmarks, the plain non-hierarchical models have had more widespread use because of their simple structure. We
investigate the potential of the plain Mamba model in visual recognition.

recognition [38, 61, 82, 96] and detection [39, 54, 69] can be tackled with relative ease. Early
methods for extracting visual representations relied on hand-crafted features such as SIFT
[62] and SURF [3]. A big breakthrough then came with the adoption of convolutional neural
networks (CNNs) that process images with local contexts and enforce spatial equivariance
[38, 47, 75]. Recently, vision transformers (ViTs) [23] obviated the need for such enforced
inductive biases in favour of learnable contexts that operate on image patches [60, 82, 84].
However, despite the overwhelming success of transformers and their self-attention mechanism
[7, 20, 100], the quadratic cost of attention has proved to be an obstacle to further scaling
such models.

This has invigorated interest in state space models (SSMs) [31, 34, 59, 92, 108]. Due to
their close ties to linear recurrent networks, SSMs have the benefits of potentially infinite
context lengths while maintaining linear complexity in the input sequence length [31], offering
substantial speedups compared to attention. However, it took several notable advances to
make SSMs effective at learning competitive representations, including enforcing state space
variables to be orthogonal basis projections [34]. The recent Mamba [31] architecture further
aligned SSM-based models with modern transformers, such as making the state space variables
input-dependent — much like queries, keys and values in self-attention. When being used for
NLP, those designs led to a state space model that could scale to the sizes and performances
of modern transformer-based LLMs [7, 83], while improving inference effiency.

There is now understandable interest in adapting the Mamba architecture to the visual
domain [49, 59, 108]. However, before we start doing that, we need to think about under
what guidelines should we design our new model. As we show in Figure 1, by examining
the development of recently proposed visual encoders, we find that adding more inductive
biases, e.g., hierarchical structure, to the plain model such as DeiT can indeed improve a
model’s performance on open-source benchmarks like ImageNet. However, we should not
ignore the fact that the plain ViT [23] is widely used by several popular vision foundation
models [26, 46, 56, 65, 67], which suggests that simplicity in architecture design is key for
multiple reasons. Firstly, maintaining a constant model width (i.e. non-hierarchical) makes
it much easier to integrate features from multiple levels, as is common in dense prediction
tasks such as semantic segmentation [46]. It also becomes easier to combine features across
different modalities such as in CLIP [67] or LLaVa [56] or as parts of increasingly complex
AI-powered systems. Furthermore, simpler components can be more easily optimized for
hardware acceleration [16]. In addition, it has also been observed that the over-crafted models
may lead to a significant gap between the performance on commonly used benchmarks
and downstream tasks [5, 25]. This means benchmark performance may no longer reflect
real-world usefulness, as over-engineering tends to increase model complexity and thus make

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Liu, Mao, Wu, Feichtenhofer, Darrell, and Xie} 2022

Citation
Citation
{Touvron, Cord, Douze, Massa, Sablayrolles, and Jégou} 2021

Citation
Citation
{Xie, Girshick, Doll{á}r, Tu, and He} 2016

Citation
Citation
{He, Gkioxari, Dollar, and Girshick} 2017

Citation
Citation
{Lin, Goyal, Girshick, He, and Dollar} 2017{}

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Lowe} 2004

Citation
Citation
{Bay, Tuytelaars, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2006

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Touvron, Cord, Douze, Massa, Sablayrolles, and Jégou} 2021

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell, Agarwal, Herbert-Voss, Krueger, Henighan, Child, Ramesh, Ziegler, Wu, Winter, Hesse, Chen, Sigler, Litwin, Gray, Chess, Clark, Berner, McCandlish, Radford, Sutskever, and Amodei} 2020

Citation
Citation
{Devlin, Chang, Lee, and Toutanova} 2019

Citation
Citation
{Yang, Xu, Mello, Crowley, and Wang} 2023

Citation
Citation
{Gu and Dao} 2023

Citation
Citation
{Gu, Johnson, Timalsina, Rudra, and RÃ©} 2023

Citation
Citation
{Liu, Tian, Zhao, Yu, Xie, Wang, Ye, and Liu} 2024{}

Citation
Citation
{Williams, Lawrence, etprotect unhbox voidb@x protect penalty @M  {}al.} 2007

Citation
Citation
{Zhu, Liao, Zhang, Wang, Liu, and Wang} 2024

Citation
Citation
{Gu and Dao} 2023

Citation
Citation
{Gu, Johnson, Timalsina, Rudra, and RÃ©} 2023

Citation
Citation
{Gu and Dao} 2023

Citation
Citation
{Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell, Agarwal, Herbert-Voss, Krueger, Henighan, Child, Ramesh, Ziegler, Wu, Winter, Hesse, Chen, Sigler, Litwin, Gray, Chess, Clark, Berner, McCandlish, Radford, Sutskever, and Amodei} 2020

Citation
Citation
{Touvron, Lavril, Izacard, Martinet, Lachaux, Lacroix, Rozi{è}re, Goyal, Hambro, Azhar, etprotect unhbox voidb@x protect penalty @M  {}al.} 2023

Citation
Citation
{Li, Singh, and Grover} 2024

Citation
Citation
{Liu, Tian, Zhao, Yu, Xie, Wang, Ye, and Liu} 2024{}

Citation
Citation
{Zhu, Liao, Zhang, Wang, Liu, and Wang} 2024

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{etprotect unhbox voidb@x protect penalty @M  {}al} 2022

Citation
Citation
{Kirillov, Mintun, Ravi, Mao, Rolland, Gustafson, Xiao, Whitehead, Berg, Lo, Doll{á}r, and Girshick} 2023

Citation
Citation
{Liu, Li, Wu, and Lee} 2023{}

Citation
Citation
{Oquab, Darcet, Moutakanni, Vo, Szafraniec, Khalidov, Fernandez, Haziza, Massa, El-Nouby, Howes, Huang, Xu, Sharma, Li, Galuba, Rabbat, Assran, Ballas, Synnaeve, Misra, Jegou, Mairal, Labatut, Joulin, and Bojanowski} 2023

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Kirillov, Mintun, Ravi, Mao, Rolland, Gustafson, Xiao, Whitehead, Berg, Lo, Doll{á}r, and Girshick} 2023

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Liu, Li, Wu, and Lee} 2023{}

Citation
Citation
{Dao, Fu, Ermon, Rudra, and R{é}} 2022{}

Citation
Citation
{Beyer, H{é}naff, Kolesnikov, Zhai, and Oord} 2020

Citation
Citation
{Ericsson, Gouk, and Hospedales} 2021



YANG ET AL.: PLAINMAMBA 3

it harder for others to re-use.
Motivated by the above findings, we propose PlainMamba: a simple Mamba architecture

for visual recognition. This model integrates ideas from CNNs, Transformers and novel
SSM-based models with an aim to providing easy-to-use models for the vision modality.
Compared to previous visual state space models [59, 108], we simplify the architecture by
maintaining constant model width across all layers of the network via stacking identical blocks
as well as removing the need for CLS tokens. This allows for easy scaling and model re-use,
while achieving competitive performances.

Our contributions are as follows: (1) We propose a new visual state space model we
call PlainMamba. This architecture improves and simplifies previous attempts at extending
the Mamba architecture to the visual modality. (3) We improve the SSM block by adapting
selective scanning to better process 2D spatial inputs, in two ways. (i) Our continuous 2D
scanning approach ensures that the scanning sequence is spatially continuous to improve
semantic continuity. (ii) Our direction-aware updating, inspired by positional encoding,
allows the model to encode the directionality of each scanning order to further improve spatial
context. (3)We test our PlainMamba architecture using three different sizes (7M, 26M and
50M) and show how they perform competitively on a range of tasks, from ImageNet1K
classification to semantic segmentation and object detection. Specifically, we show that
PlainMamba outperforms its non-heretical counterparts, including SSMs and Transformers,
while performing on par with the hierarchical competitors.

2 Related Work
Visual Feature Extractors. How to effectively extract visual features from images has
been a long-standing challenge in computer vision. In the early years of deep learning,
CNNs [38, 47, 75, 96] dominated the model architecture landscape. Their induced spa-
tial prior, through the use of convolutional filters, exploits the locality of visual features.
Furthermore, stacking multiple layers increases their receptive field. Many different CNN
backbone architectures have been proposed over the years [12, 44, 47], introducing new
ways of exploiting spatial information [75, 96], building deeper models [38, 79], improving
efficiency [68, 73, 80], adding multi-scale connections [71], scaling architectures [93], and
introducing attention mechanisms [4, 9, 42, 77, 85, 87]. In recent years, ViTs have become a
powerful tool for image modeling [23]. Compared to CNNs, they make fewer assumptions
about data (feature locality [99], translation and scale invariance). By replacing the convolu-
tional layers with self-attention modules, transformers can capture global relationships and
have achieved state-of-the-art results on many common image benchmarks [19, 52, 107].
To adapt the original transformer architecture [84] for vision tasks, images are split into
patches and converted into tokens before being fed into the transformer encoder. Within this
framework, numerous works have focused on pushing the performance (e.g. LeViT, [30]
combining transformer encoder layers and convolutions), or on reducing the costly quadratic
complexity of self-attention [15, 17]. Another popular extension to ViT architectures has been
the addition of hierarchical structures [27, 60, 88, 94, 98], similar to the multi-scale feature
pyramids used in CNNs. The Swin Transformer [60], for instance, uses shifted windows to
share feature information across scales. These multi-scale features are then used for a wide
range of downstream tasks. Recent research has explored ways of using these hierarchical
features within ViTs themselves [8, 22, 24, 36, 37, 48, 51, 70, 74]. Some works [60] have
examined the use of multi-resolution features as attention keys and values to learn multi-scale
information. However, these extensions add complexity to the model and make it harder to
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Figure 2: (a) The overall architecture of the proposed PlainMamba. PlainMamba does not have a hierarchical
structure, it instead stacks 𝐿 identical PlainMamba block to form the main network. For image classification, it uses
global average pooling instead of the CLS to gather global information. (b) Architecture of PlainMamba block, which
is similar to the Mamba [31] block where the selective scanning is combined with a gated MLP. (c) The proposed
Direction-Aware Updating, where a series of learnable parameters 𝚯𝑘 are combined with the data-dependent updating
parameters to explicitly inject relative 2D positional information into the selective scanning process.

effectively use its features in later stages, thus hindering widespread adoption. Indeed, recent
works [50, 100] return to the original ViT architecture, as its non-hierarchical nature greatly
simplifies the use of its features. In particular, the plain ViT provides greater flexibility for
pre-training and fine-tuning on different tasks.

State Space Models. State Space Models (SSMs) have emerged as efficient alternatives to
transformers and CNNs due to their ability to scale linearly with sequence length [32, 78].
SSMs transform the state space to effectively capture dependencies over extended sequences.
To alleviate the initial computational cost of such models, S4 [33] enforced low-rank constraints
on the state matrix and S5 [76] introduced parallel scanning to further improve efficiency.
Furthermore, H3 [29] achieved competitive results on common benchmarks by improving the
hardware utilization. Lastly, Mamba [31] parameterized the SSM matrices as functions of the
input, thus allowing it to act as a learnable selection mechanism and providing greater flexibility.
Follow-up works have extended selective SSMs for images [2, 57, 58, 63, 66, 72, 90, 91]
and videos [64] using a hierarchical structure [59] and bidirectional blocks [108], while
Mamba-ND [49] introduces an architecture for multi-dimensional data. MambaIR [35] tackles
image restoration, and Pan-Mamba [40] works on pan-sharpening. DiS [28] introduces
SSMs to diffusion models by replacing the U-Net with an SSM backbone. While drawing
inspiration from the above works, PlainMamba improves Mamba’s [31] selective SSM block
by adding wider depth-wise convolutions. In contrast to the Cross-Scan Module (CSM) [59]
and Mamba-ND [49], PlainMamba respects the spatio-sequential nature of image patches
(see Figure 2). As opposed to [108], we do not use the CLS token.

Simplifying Visual Feature Extractors. Simplifying and unifying existing methods is
equally important as improving performance. Plain architectures are robust, conceptually
simpler, and scale better. ViTs [23] remove the pyramid structure of CNNs by converting
images into patched tokens. This way, they easily adapt the transformer architecture for
visual tasks. Another trick that stems form sequence modeling is the usage of CLS tokens for
prediction, which have proven to be unnecessary for visual tasks [103]. FlexiVit [6] unified
into a single architecture images with different input resolutions, and GPViT [100] improved
feature resolution with a non-hierarchical transformer. Similarly, ConvNext [61] introduced a
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simple CNN model that competed with state-of-the-art transformer methods. Other works,
like MLP-Mixer [81] and follow-up works [41], have introduced simple architectures using
only multi-layer perceptrons. The plain non-hierarchical ViT [23] has served as a simple
building block for many diverse tasks. SAM [46] uses a pre-trained ViT as image encoder with
minimal changes for image segmentation at large scale. DinoV2 [18, 65] uses a ViT to learn
general-purpose visual features by pretraining models on curated datasets with self-supervision.
Similarly, the image encoder for the CLIP [67] model consists of a basic ViT with minor
modifications, allowing image-text representations to be learned with a contrastive objective.
DALLE-2 [26] incorporates a ViT image encoder to extract visual features that are used for
text-conditional image generation. LlaVA [55, 56] combines a vision encoder (pretrained ViT
from CLIP) and an LLM for vision-language tasks.

3 Method
3.1 Preliminaries

State Space Models. SSMs are typically used to model a continuous linear time-invariant
(LTI) system [92] where an input signal 𝑥(𝑡) ∈ R is mapped to its output signal 𝑦(𝑡) ∈ R
through a state variable ℎ(𝑡) ∈ R𝑚 with the following rules:

ℎ′ (𝑡) = Aℎ(𝑡) +B𝑥(𝑡), 𝑦(𝑡) = Cℎ′ (𝑡) +D𝑥(𝑡) (1)

where A ∈ R𝑚×𝑚, B ∈ R𝑚×1, C ∈ R1×𝑚 and D ∈ R1×1 are parameters. To make the above
system usable for a discrete system, e.g., a sequence-to-sequence task, a timescale parameter
𝚫 is used to transform the parameters A and B to their discretized counterparts Ā and B̄. In
Mamba [31] and its following works [59, 108], this is achieved with the following zero-order
hold (ZOH) rule:

Ā = exp (𝚫A), B̄ = (𝚫A)−1 (exp (𝚫A) − I) ·𝚫B (2)

Afterwards, an input sequence {𝑥𝑖} (for 𝑖 = 1,2, ...) can be mapped to its output sequence {𝑦𝑖}
in a similar way:

ℎ′𝑖 = Āℎ𝑖−1 + B̄𝑥𝑖 , 𝑦𝑖 = Cℎ′𝑖 +D𝑥𝑖 (3)

Mamba. Since SSMs are often used to model LTI systems, their model parameters are shared
by all time steps 𝑖. However, as found in Mamba [31], such time-invariant characteristics
severely limit the model’s representativity. To alleviate this problem, Mamba lifts the time-
invariant constraint and makes the parameters B, C and 𝚫 dependent on the input sequence
{𝑥𝑖}, a process they refer to as the selective scan, resulting in the token-dependent {B𝑖}, {C𝑖}
and {𝚫𝑖}. Moreover, the SSM is combined with a gated MLP [43] to gain better representation
ability. Specifically, the output sequence {𝑦𝑖} is computed from the {𝑥𝑖} as the following:

𝑥′𝑖 = 𝜎
(
DWConv

(
Linear(𝑥𝑖)

) )
, 𝑧𝑖 = 𝜎

(
Linear(𝑥𝑖)

)
(4)

B𝑖 ,C𝑖 ,𝚫𝑖 = Linear(𝑥′𝑖), Ā𝑖 , B̄𝑖 = ZOH(A,Bi,𝚫i) (5)
ℎ′𝑖 = Ā𝑖ℎ𝑖−1 + B̄𝑖𝑥

′
𝑖 , 𝑦′𝑖 = C𝑖ℎ

′
𝑖 +D𝑥′𝑖 , 𝑦𝑖 = 𝑦′𝑖 ⊙ 𝑧𝑖 (6)

where 𝜎 denotes the SiLU activation, and ⊙ denotes element-wise multiply.

Citation
Citation
{Tolstikhin, Houlsby, Kolesnikov, Beyer, Zhai, Unterthiner, Yung, Steiner, Keysers, Uszkoreit, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Hou, Jiang, Yuan, Cheng, Yan, and Feng} 2022

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Kirillov, Mintun, Ravi, Mao, Rolland, Gustafson, Xiao, Whitehead, Berg, Lo, Doll{á}r, and Girshick} 2023

Citation
Citation
{Darcet, Oquab, Mairal, and Bojanowski} 2023

Citation
Citation
{Oquab, Darcet, Moutakanni, Vo, Szafraniec, Khalidov, Fernandez, Haziza, Massa, El-Nouby, Howes, Huang, Xu, Sharma, Li, Galuba, Rabbat, Assran, Ballas, Synnaeve, Misra, Jegou, Mairal, Labatut, Joulin, and Bojanowski} 2023

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{etprotect unhbox voidb@x protect penalty @M  {}al} 2022

Citation
Citation
{Liu, Li, Li, and Lee} 2023{}

Citation
Citation
{Liu, Li, Wu, and Lee} 2023{}

Citation
Citation
{Williams, Lawrence, etprotect unhbox voidb@x protect penalty @M  {}al.} 2007

Citation
Citation
{Gu and Dao} 2023

Citation
Citation
{Liu, Tian, Zhao, Yu, Xie, Wang, Ye, and Liu} 2024{}

Citation
Citation
{Zhu, Liao, Zhang, Wang, Liu, and Wang} 2024

Citation
Citation
{Gu and Dao} 2023

Citation
Citation
{Hua, Dai, Liu, and Le} 2022



6 YANG ET AL.: PLAINMAMBA

ViM VMamba Plain Mamba
Figure 3: Comparison between our Continuous 2D Scanning and the selective scan orders in ViM [108] and
VMamba [59]. Our method makes sure that every scanned visual token is spatially adjacent to its predecessor,
avoiding potential spatial and semantic discontinuity.

3.2 Overall architecture of PlainMamba

In Figure 2, we present the model architecture of PlainMamba. Our model is divided into
three main components: (1) a convolutional tokenizer that transforms an input 2D image into
visual tokens, (2) the main network with a series of 𝐿 identical PlainMamba blocks to learn
visual representations, and (3) a task-specific head for downstream applications.

In more detail, the tokenizer will downsample the input image 𝐼 ∈ R𝐻𝐼×𝑊𝐼×3 into a
list of visual tokens 𝑥 ∈ R𝐻×𝑊×𝐶 , where 𝐶 is the channel number. We set the default
down-sampling factor to 16, following ViT [23]. After combining the initial visual tokens
with positional embeddings [84] for retaining spatial information, the tokens undergo a series
of transformations through the 𝐿 PlainMamba blocks, which are designed to simplify usage by
maintaining the input-output shape consistency. The final stage of the architecture involves a
task-specific head, which is dependent on the particular downstream application. For instance,
in image classification tasks, the image tokens are globally pooled into a vector, which is then
fed into a linear classification head to produce the final output.

PlainMamba distinguishes itself from existing vision transformers [23, 57] and concurrent
vision Mamba [59, 108] architectures in several key aspects. Firstly, it does not use any special
tokens, such as the commonly used CLS token. Secondly, in contrast to approaches that adopt a
hierarchical structure to manage feature resolution [51, 60, 89], Instead, PlainMamba maintains
a constant feature resolution across all blocks. This design choice considers the recent progress
made in various visual foundation models [46, 65, 67] where the plain non-hierarchical ViT is
used rather than its hierarchical counterparts.

3.3 PlainMamba Block

The overall architecture comprises several identical PlainMamba blocks, forming the backbone
for learning high-quality visual features. We present the structure of the PlainMamba block
in Figure 2, in which we make several key adjustments to the original Mamba block to fully
exploit the two-dimensional nature of image inputs. This adaptation is crucial for effectively
transitioning from the inherently 1D processing paradigm of language models to the 2D
domain of images. To this end, we introduce two novel techniques: (1) Continuous 2D
Scanning and (2) Direction-Aware Updating. The first technique ensures that each visual
token is always adjacent to the previous scanned token. By doing so, it mitigates positional
bias and encourages a more uniform understanding of the image space, enhancing the model’s
ability to learn from visual inputs. The second technique explicitly embeds the 2D relative
positional information into the selective scanning process, which allows the model to better
interpret the positional context of flattened visual tokens.
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Table 1: PlainMamba variants. FLOPs are measured using input size 224×224.

Model Depth Channels Params FLOPs

PlainMamba-L1 24 192 7.3M 3.0G
PlainMamba-L2 24 384 25.7M 8.1G
PlainMamba-L3 36 448 50.5M 14.4G

Continuous 2D Scanning. The selective scan mechanism is inherently designed for sequential
data, such as text. Adapting this mechanism for 2D image data requires flattening the 2D
viusal tokens into a 1D sequence to apply the State Space Model (SSM) updating rule. Prior
research, e.g., VisionMamba [108] and VMamba [59], has demonstrated the efficacy of
using multiple scanning orders to enhance model performance — such as both row-wise and
column-wise scans in multiple directions. However, as shown in Figure 3 (a) and (b), in
these approaches, each scanning order can only cover one type of 2D direction, e.g., left to
right, causing spatial discontinuity when moving to a new row (or column). Moreover, as the
parameter A in Equation 3 serves as a decaying term, such spatial discontinuity can also cause
adjacent tokens to be decayed to different degrees, compounding the semantic discontinuity
and resulting in potential performance drop.

Our Continuous 2D Scanning addresses this challenge by ensuring a scanned visual token
is always adjacent (in the 2D space) to the previously scanned token. As shown in Figure 3 (c),
in our approach, the visual tokens are also scanned in four distinct orders. When reaching the
end of a row (or column), the next scanned token will be its adjacent, not the opposite, token
in the next column (or row). Then, the scanning continues with a reversed direction until it
reaches the final visual token of the image. As a consequence, our method preserves spatial
and semantic continuity and avoids potential information loss when scanning non-adjacent
tokens. Furthermore, in practice the model usually takes input images of the same size,
meaning our method can be easily implemented and efficiently run by pre-computing the
permutation indexes.

Direction-Aware Updating. As shown in Equation 3, the contribution of a token 𝑥𝑖 to the
hidden state ℎ𝑖 in the selective scan is determined by the parameter B̄𝑖 , derived from 𝑥𝑖
itself. In language models, the sequential order naturally dictates the positional relationship
between tokens, allowing the model to "remember" their relative positions. However, in
our Continuous 2D Scanning, the current token can be in one of four possible directions
relative to its predecessor. This challenges the model’s ability to discern the precise spatial
relationship between consecutive tokens based on B𝑖 alone. Our Direction-Aware Updating is
therefore proposed to address this challenge. Drawing inspiration from the relative positional
encoding mechanisms in vision transformers [23], we employ a set of learnable parameters
{𝚯𝑘 ∈ R𝑚×1} (for 𝑘 = 1,2, ...,5), representing the four cardinal directions plus a special BEGIN
direction for the initial token. These parameters are summed with the data-dependent B𝑖 to
enrich the selective scan process with directional information. Specifically, with 𝑥𝑖 and 𝑧𝑖
following Equation 3, our Direction-Aware Updating is formulated as follows:

ℎ′𝑘,𝑖 = Ā𝑖ℎ𝑘,𝑖−1 + (B̄𝑖 + �̄�𝑘,𝑖)𝑥𝑖 (7)

𝑦′𝑖 =
4∑︁

𝑘=1

(
C𝑖ℎ

′
𝑘,𝑖 +D𝑥𝑖

)
, 𝑦𝑖 = 𝑦′𝑖 ⊙ 𝑧𝑖 (8)

where 𝑘 spans the four distinct scanning directions introduced by our Continuous 2D Scanning.
Alternatively, for the initial token of each scan, we instead add the final �̄�𝑘=5 vector. The term
�̄�𝑘,𝑖 represents the discretized 𝚯𝑘,𝑖 using 𝚫𝑖 .
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3.4 Model Variants of PlainMamba
As shown in Table 1, we present three different model variants of PlainMamba. Specifically,
from PlainMamba-L1 to PlainMamba-L2, we scale the model width, i.e., feature channel
numbers, and keep the model depth to 24. From PlainMamba-L2 to PlainMamba-L3, we
scale both model width and depth. The FLOPs are measured using 224×224 inputs, and we
follow the official Mamba codebase to compute the FLOPs of the selective scan process.

4 Experiments

Table 2: Comparison between PlainMamba and other
models on ImageNet-1K. (∗ denotes best epoch result.)

Model Hierarchical Params FLOPs Top-1
CNN
ResNeXt101-32×4 [97] ✓ 44M 8.0G 78.6
ResNeXt101-32×8 [97] ✓ 88M 16.5G 79.3
RegNetY-4G [68] ✓ 21M 4.0G 80.0
RegNetY-8G [68] ✓ 39M 8.0G 81.7
ConvNeXt-T [61] ✓ 29M 4.5G 82.1
ConvNeXt-S [61] ✓ 50M 8.7G 83.1
Transformer
DeiT-Tiny [82] ✗ 5M 1.3G 72.2
DeiT-Small [82] ✗ 22M 4.6G 79.9
DeiT-Base [82] ✗ 86M 16.8G 81.8
Swin-Tiny [60] ✓ 29M 4.5G 81.3
Swin-Small [60] ✓ 50M 8.7G 83.0
PVT-Tiny [88] ✓ 13M 2G 75.1
PVT-Small [88] ✓ 25M 3.8G 79.8
PVT-Medium [88] ✓ 44M 6.7G 81.2
Focal-Tiny [101] ✓ 29M 4.9G 82.2
Focal-Small [101] ✓ 51M 9.1G 83.5
State Space Modeling
ViM-T [108] ✗ 7M - 76.1
ViM-S [108] ✗ 26M - 80.5
LocalViM-T [45] ✗ 8M 1.5G 76.2
LocalViM-S [45] ✗ 28M 4.8G 81.2
Mamba-ND-T [49] ✗ 24M - 79.2
Mamba-ND-S [49] ✗ 63M - 79.4
S4ND-ViT-B [64] ✗ 89M - 80.4
S4ND-ConvNeXt-T [64] ✓ 30M - 82.2
VMamba-T [59] ✓ 22M 5.6G ∗82.2
VMamba-S [59] ✓ 44M 11.2G ∗83.5
PlainMamba-L1 ✗ 7M 3.0G 77.9
PlainMamba-L2 ✗ 25M 8.1G 81.6
PlainMamba-L3 ✗ 50M 14.4G 82.3

In the main paper, we quantitatively com-
pare PlainMamba with previously proposed
models on four visual recognition tasks: im-
age classification, object detection, instance
segmentation, and semantic segmentation.
Please refer to our supplementary materials
for further ablation studies.

4.1 Experiment Settings
ImageNet Classification. We build
our codebase following [100], which
is a commonly used training recipe.
Specifically, for the ImageNet-1k exper-
iments, we train all PlainMamba mod-
els for 300 epochs using AdamW op-
timizer. Following [60], we set the
batch size to 2048, weight decay to
0.05, and the peak learning rate to
0.002. Cosine learning rate schedul-
ing is used. For data augmenta-
tion, we used the commonly used
recipe [21, 22, 60, 82], which in-
cludes Mixup [104], Cutmix [102],
Random erasing [106] and Rand aug-
ment [14].

ADE20K Semantic Segmentation. We follow common practice [22, 60, 100] to use Uper-
Net [95] as the segmentation network. Unlike XCiT [1], we do not explicitly resize the
constant resolution feature maps into multi-scale. Following [60], we train all models for 160
iterations with batch size 16 and set the default training image size to 512×512.

COCO Object Detection and Instance Segmentation. Following [100], we test Plain-
Mamba’s ability on COCO object detection and instance segmentation using both the two-stage
Mask R-CNN [39] and the single-stage RetinaNet [54]. For both models, we report the results
of both 1× schedule. Following [100], we use ViTAdapter [10] to compute multi-scale features
to fit the FPN network structure. We use the commonly used training settings proposed in [60]
to keep a fair comparison.
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4.2 Main Results

ImageNet-1K Classification. In Table 2, we report the ImageNet-1K experiment results. We
compare PlainMamba with three different kinds of visual feature extractors: CNNs, vision
transformers, and SSMs. In addition, the comparison includes both hierarchical and non-
hierarchical models. Firstly, when comparing with SSMs, our model is doing better than the
recently proposed Vision Mamba [108] and Mamba-ND [49]. For example, PlainMamba-L2
achieves a 2.4% higher accuracy than Mamba-ND-T while they share a similar model size.
These results validate PlainMamba’s effectiveness as a non-hierarchical SSM. Secondly, when
compared with CNNs and transformers, our model achieves better performance than the
non-hierarchical counterparts. For example, PlainMamba-L2 achieves 1.7% better accuracy
with DeiT-Small. Moreover, PlainMamba also achieves similar performance when compared
with hierarchical models. For example, when the model size is around 25M, our model
achieves 0.3% better accuracy than Swin-Tiny, validating PlainMamba’s ability as a general
feature extractor. On the other hand, the hierarchical VMamba [59], together with other
hierarchical transformers, do achieve a better accuracy than ours. As we explained in Section 1,
hierarchical models tend to perform better than non-hierarchical ones in visual recognition.
As the main motivation of our work is to develop a simple Mamba architecture, a bit inferior
ImageNet accuracy is acceptable.

Table 3: ADE20K semantic segmentation using UperNet.
The FLOPs are computed using input size 512×2048.

Backbone Hierarchical Params FLOPs mIoU
CNN
ResNet-50 [38] ✓ 67M 953G 42.1
ResNet-101 [38] ✓ 85M 1030G 44.0
ConvNeXt-T [61] ✓ 60M 939G 46.7
Transformer
DeiT-S+MLN [82] ✗ 58M 1217G 43.8
DeiT-B+MLN [82] ✗ 144M 2007G 45.5
XCiT-T12/8 [1] ✗ 34M - 43.5
XCiT-S12/8 [1] ✗ 52M 1237G 46.6
XCiT-S24/8 [1] ✗ 74M 1587G 48.1
Swin-Tiny [60] ✓ 60M 945G 44.5
Swin-Small [60] ✓ 81M 1038G 47.6
Focal-Tiny [101] ✓ 62M 998G 45.8
Focal-Small [101] ✓ 85M 1130G 48.0
Twins-SVT-Small [13] ✓ 54M 912G 46.2
Twins-SVT-Small [13] ✓ 88M 1044G 47.7
State Space Modeling
ViM-T [108] ✗ 13M - 41.0
ViM-S [108] ✗ 46M - 44.9
LocalVim-T [45] ✗ 36M 181G 43.4
LocalVim-S [45] ✗ 58M 297G 46.4
VMamba-T [59] ✓ 55M 964G 47.3
VMamba-S [59] ✓ 76M 1081G 49.5
PlainMamba-L1 ✗ 35M 174G 44.1
PlainMamba-L2 ✗ 55M 285G 46.8
PlainMamba-L3 ✗ 81M 419G 49.1

ADE20K Semantic Segmentation We re-
port our model’s ADE20K semantic seg-
mentation performance in Table 3. Sim-
ilar to the ImageNet-1k and COCO ex-
periments, here the competing models in-
clude both hierarchical and non-hierarchical
backbones in three types of visual fea-
ture extractors. The results again suggest
that PlainMamba achieves the best perfor-
mance among the non-hierarchical mod-
els. For example, with similar parameter
amounts, PlainMamba-L2 outperforms the
high-resolution (patch size of 8) XCiT-S12/8
model [1] with a much lower computation
cost. Moreover, PlainMamba-L2 also out-
performs the hierarchical Swin-Transformer-
Tiny [60], achieving better mIoU while hav-
ing a lower model size and FLOPs. At the
same time, PlainMamba is also doing better
than the concurrent Vision Mamba [108].
For instance, PlainMamba-L2 achieves a 1.9 higher mIoU than ViM-S. This result verifies
our model’s effectiveness in extracting fine-grained visual features, which is essential for the
pixel-wise semantic segmentation task.

COCO Object Detection and Instance Segmentation. We report the results of Mask
R-CNN object detection and instance segmentation in Table 4. With similar FLOPs and
many fewer parameters, PlainMamba-L1 achieves 44.1 AP𝑏𝑏 and 39.1 AP𝑚𝑘 when using 1×
training schedule, while Swin-Small achieves 44.8 AP𝑏𝑏 and 40.9 AP𝑚𝑘 . We also observe that
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Table 4: Mask R-CNN object detection and instance segmentation on MS COCO mini-val using 1× schedule. We
use ViTAdapter [10] to compute multi-scale features. FLOPs are computed using input size 1280×800.

Backbone Hierarchical Params FLOPs 𝐴𝑃𝑏𝑏 𝐴𝑃𝑏𝑏
50 𝐴𝑃𝑏𝑏

75 𝐴𝑃𝑚𝑘 𝐴𝑃𝑚𝑘
50 𝐴𝑃𝑚𝑘

75
CNN
ResNeXt101-32x4d [97] ✓ 63M 340G 41.9 - - 37.5 - -
ResNeXt101-64x4d [97] ✓ 102M 493G 42.8 - - 38.4 - -
Transformer
ViT-Adapter-T [10] ✗ 29M 349G 41.1 62.5 44.3 37.5 59.7 39.9
ViT-Adapter-S [10] ✗ 49M 463G 44.7 65.8 48.3 39.9 62.5 42.8
ViT-Adapter-B [10] ✗ 131M 838G 47.0 68.2 51.4 41.8 65.1 44.9
PVT-Small [88] ✓ 44M - 40.4 62.9 43.8 37.8 60.1 40.3
PVT-Medium [88] ✓ 64M - 42.0 64.4 45.6 39.0 61.6 42.1
PVT-Large [88] ✓ 81M - 42.9 65.0 46.6 39.5 61.9 42.5
Swin-Tiny [60] ✓ 48M 264G 42.2 - - 39.1 - -
Swin-Small [60] ✓ 69M 354G 44.8 - - 40.9 - -
ViL-Tiny [105] ✓ 26M 145G 41.4 63.5 45.0 38.1 60.3 40.8
ViL-Small [105] ✓ 45M 218G 44.9 67.1 49.3 41.0 64.2 44.1
ViL-Medium [105] ✓ 60M 293G 47.6 69.8 52.1 43.0 66.9 46.6
State Space Modeling
EfficientVMamba-T [66] ✓ 11M 60G 35.6 57.7 38.0 33.2 54.4 35.1
EfficientVMamba-S [66] ✓ 31M 197G 39.3 61.8 42.6 36.7 58.9 39.2
EfficientVMamba-B [66] ✓ 53M 252G 43.7 66.2 47.9 40.2 63.3 42.9
VMamba-T [59] ✓ 42M 262G 46.5 68.5 50.7 42.1 65.5 45.3
VMamba-S [59] ✓ 64M 357G 48.2 69.7 52.5 43.0 66.6 46.4
PlainMamba-Adapter-L1 ✗ 31M 388G 44.1 64.8 47.9 39.1 61.6 41.9
PlainMamba-Adapter-L2 ✗ 53M 542G 46.0 66.9 50.1 40.6 63.8 43.6
PlainMamba-Adapter-L3 ✗ 79M 696G 46.8 68.0 51.1 41.2 64.7 43.9

hierarchical models tend to work better than non-hierarchical models. Although our model
achieves lower performance than some hierarchical models, e.g., the concurrent VMamba [59],
PlainMamba achieves the best performance among its non-hierarchical counterparts. For
instance, when using 1× training schedule, PlainMamba achieves 3.1 higher AP𝑏𝑏 and 1.6
higher AP𝑚𝑘 than DeiT-T when they are both equipped with the ViTAdapter [10]. These
results demonstrate that PlainMamba is able to extract good local features, which is important
to the object-level tasks like instance segmentation. On the other hand, we also admit that
PlainMamba is performing worse than the hierarchical VMamba [59]. We attribute such
inferiority to the multi-resolution architecture of FPN-based [53] Mask R-CNN, which is
more naturally suitable to the hierarchical designs.

5 Conclusion
We present PlainMamba, a plain SSM-based model for visual recognition. Our model is
conceptually simple because it uses no special tokens or hierarchical structure, making it
a perfect counterpart to the widely used plain vision transformer. The results show that
PlainMamba achieves superior performance to previous non-hierarchical models, including the
concurrent SSM-based models, and can perform on par with the high-performing hierarchical
models. We hope our model can serve as a baseline for future research in this area.
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