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Abstract

Analyzing the morphology of pyramidal cells (PCs) is essential to understanding
brain activity and disease mechanisms. Existing methods describe the morphology of
PCs in a task-agnostic manner, leading to insufficient representations for various anal-
ysis tasks. This paper presents a Task-related Feature Enhancement Network (TFENet)
to discern subtle morphological differences and identify the PCs in a task-related man-
ner. The TFENet first extracts task-common features via a shared backbone across tasks
and then generates task-specific features for each task individually. The task-specific
features are refined using a Region Feature Enhancement Module (RFEM) based on
the morphology-aware regions. Furthermore, a Global Category-guided Fusion Mod-
ule (GCFM) adaptively combines the task-specific and task-common features, yielding a
distinctive morphology descriptor. Extensive experiments demonstrate the effectiveness
of our method, achieving 90.34% and 74.15% accuracy for the species and brain region
analysis tasks, respectively, outperforming the task-agnostic methods.

1 Introduction
Pyramidal cells (PCs), the principal excitation neuron type in the cerebral cortex, make up
approximately two-thirds of all neurons in the mammalian cortex [19, 28]. These cells are
distributed throughout various brain regions in mammals, including the cerebral cortex, hip-
pocampus, and amygdala [20]. Thus, they are associated with a variety of cognition activities
of the brain. To better understand the neural bases of such complex activities, it is essential
to understand and analyze the morphologies of PCs.

PCs consist of subtypes distributed in multiple brain regions and possess variable mor-
phology [8, 21, 24]. Moreover, the morphology of PC is also highly variable between
species [5, 28]. The morphological difference makes brain region and species analysis of
PCs more challenging. Recently, many methods and tools have been proposed to effec-
tively characterize the shape of PCs. Given the tree-like structure of neurons, many efforts
focus on computing heuristic measurements based on predefined metrics [3, 27]. These
measurements include the total length and width, the order of the branch, and the surface of
soma [26]. Many studies design features to accurately represent the morphology of neurons
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Figure 1: Framework of the proposed Task-related Feature Enhancement Network (TFENet).
TFENet introduces the Region Feature Enhancement Module (RFEM) to mine the salient
task-specific features and the Global Category-guided Fusion Module (GCFM) to adaptively
fuse the task-common (Fc) and task-specific features (Fse or Fle ) to generate a more distinct
morphological descriptor (Fsd or Fld).

based on the principles of topology and geometry, such as Sholl analysis [18] and topo-
logical morphology descriptor [10]. Besides, to achieve a more precise comparison of two
or more neuronal structures, some studies decompose the whole neuron tree into multiple
segments and then employ heuristic measurements to quantify the difference between neu-
rons [2, 11]. Later, several learning-based techniques emerged that use deep neural networks
to precisely describe neuronal morphology and significantly improve the analysis perfor-
mance [13, 14, 16, 17, 30, 31]. For instance, Li et al. [14] leverage a stacked convolutional
auto-encoder to learn neuronal morphologies. Additionally, a generative adversarial net-
work is designed to analyze the morphological features of neurons [15]. While achieving
improved results, these methods perform the analysis task in a task-agnostic manner, identi-
fying neurons with the same feature representations for all tasks. Consequently, they fail to
capture the subtle morphological differences for different analysis tasks or neuronal types.
Since neurons exhibit variations in shape, size, and branching pattern, it is crucial to extract
fine-grained and exclusive morphological features for the species and brain region analysis
to fully capture these subtle distinctions.

In this paper, we propose a Task-related Feature Enhancement Network (TFENet) that
effectively describes the morphology of PCs in a task-related manner and performs multiple
analysis tasks of PCs simultaneously. As shown in our previous work [25], there are common
features for species and brain region analysis tasks. Furthermore, the specific features should
be explored and enhanced to improve the performance of different tasks. Specifically, we first
obtain the task-common feature using a shared backbone and then capture the task-specific
features for each analysis task. Moreover, we introduce a Region Feature Enhancement
Module (RFEM) to mine the salient features from the key morphology-aware regions to
capture the distinctive task-specific features. To fully characterize the morphology of PCs,
we design a Global Category-guided Fusion Module (GCFM) to determine the importance
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of the task-common and task-specific features for the final decision and adaptively fuse them
to generate a distinguishing morphology descriptor. Experimental results demonstrate that
our TFENet can effectively characterize the subtle morphological difference for PCs and
improve the performance of the species and brain region analysis tasks.

The main contributions of our method can be outlined as follows:

1. We propose a TFENet to perform fine-grained classification of PCs in a task-related
manner. TFENet explicitly extracts fine-grained morphology features and conducts
multiple analysis tasks simultaneously.

2. We introduce an RFEM to capture salient task-specific features from the morphology-
aware regions, and a GCFM to learn the importance of the task-common and task-
specific features and adaptively fuse them into a more discriminative descriptor.

3. Our method achieves promising analysis performance in identifying PCs according
to brain layer and species. Notable, we achieve an overall accuracy of 90.34% when
identifying the species of PCs.

2 Methodology
As illustrated in Fig. 1, the TFENet mainly includes feature extraction, specific representa-
tion learning, feature fusion, and classification modules. It extracts morphological features in
a task-related manner and performs the analysis on the species and brain region to which the
neuron belongs simultaneously. Specifically, the TFENet explicitly learns the task-common
features (Fc) using the shared backbone from the neuron data. Since handling 3D data di-
rectly in a unified network is challenging, we project the 3D neuron data into three 2D view
images like in [14, 15, 25]. These view images are concatenated along the channel and fed
into the TFENet to extract the features. Then, the distinguishing specific representations for
different tasks are captured through the introduced RFEM (shown in Fig. 2). Finally, to gen-
erate a distinct feature descriptor, our TFENet combines the task-common and task-specific
features adaptively through GCFM (shown in Fig. 3). In this way, the acquired morpholog-
ical features contribute to the final decision-making. Finally, the fused feature descriptor is
fed into the classifier to predict the species or brain regions of PCs.

2.1 Region Feature Enhancement Module (RFEM)
We observe that most regions of the neuron image are background, and only a few pixel
areas contain neuron trees. Therefore, we introduce the RFEM to learn the morphological
characteristics of neurons efficiently from the morphology-aware regions and eliminate the
influence of background.

Specifically, we first utilize a Feature Transform Layer (FTL), consisting of two convo-
lutional layers with a kernel size of 3×3 and a batch normalization layer to obtain the basic
task-specific features (Fs and Fl for different tasks). Then, the RFEM is introduced to iden-
tify and focus on salient information within a feature map. Previous research [22, 29] has
proved that in CNNs, various feature channels are associated with distinct areas and parts of
an image. Consequently, we perform morphology-aware region feature enhancement based
on channel attention. Drawing inspiration from [12], the RFEM divides the feature map Fs
into 2n sub-feature maps (Z = {Z1,Z2, · · · ,Z2n}) along the channels. As shown in Fig. 2,
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Figure 2: The framework of Region Feature Enhance Module (RFEM). It first divides the
input (Fs) into three groups. Then, it computes attention maps using the Attention Map
Generation Module (AMGM) for each group and obtains the attention map (At ). Finally, the
enhanced task-specific feature map (Fse) is acquired by assigning the At to the input Fs.

these sub-feature maps are further divided into three groups, namely ZL = {Z1,Z2, · · · ,Zn},
ZR = {Zn+1,Zn+2, · · · ,Z2n}, and ZM =

{
Zn− n

2
,Zn− n

2+1, · · · ,Zn+ n
2

}
. Note that n

2 is rounded
down. Then, the Attention Map Generation Module (AMGM) is employed to compute the
attention map. Specifically, a max pooling layer and an average pooling layer are first em-
ployed to obtain global features. Subsequently, their outputs are concatenated along the
channel. Next, we apply a fully connected layer followed by a softmax layer to compute the
attention maps as,

Ai = so f tmax( f c([max(Zi);avg(Zi)])). (1)

where i ∈ {L,R,M} and [·] is the concatenation operation. The fc is employed to reduce the
dimension of its output to be the same as Fs. Given that the critical morphological region of
the neuron tree is generally located in the center, we emphasize the information of the AM to
generate the final attention map At as follows:

At = [AL;AR],

At [Zn− n
2
,Zn− n

2+1, · · · ,Zn+ n
2
]+ = AM.

(2)

Finally, the enhanced task-specific feature map Fse is acquired by assigning the weights At
to the feature map Fs as:

Fse = At ⊙Fs +BN(Fs), (3)

where BN is the batch normalization. By leveraging the broadcasting mechanism, the At is
first expanded along the last two dimensions and then element-wise multiplied with Fs. The
obtained Fse can capture the salient features from morphology-aware regions and would be
enhanced task-specific features for the species analysis task. Similarly, we can obtain the
enhanced task-specific feature Fle for the brain region analysis task.
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Figure 3: Structure of Global Category-guided Fusion Module (GCFM). GCFM first com-
putes the weights (Wse and Wc) of different samples based on the global task-specific ( fse)
and task-common features ( fc). Consequently, the weighted features ( fse1 and fc1) are ob-
tained by assigning the weights to the global features. Finally, the weighted features ( fse1
and fc1) are further fused to generate a more distinguishing descriptor ( fsd).

2.2 Global Category-guided Fusion Module (GCFM)
To improve the performance of our method for accurate representation of the morphology
of PCs, we combine the task-common and task-specific features to generate a distinguishing
morphological descriptor for morphology analysis tasks. This module aims to amplify the
effect of task-specific features while preserving the beneficial influence of task-common
features on the final decision-making.

For the species analysis task, to better utilize task-common and task-specific features,
we predict the weight Wse and Wc for Fse and Fc through GCFM and then reflect this for the
final morphology descriptor. To make accurate predictions, we generate a distinguishing de-
scriptor using the sample importance measured by task-common and task-specific features.
Specifically, we first extract the global features ( fse and fc) by employing average pooling
on Fse and Fc, respectively.

Subsequently, for the fse, the prediction output is generated through a classifier (G) and
a softmax layer, denoted as Pi(x) = so f tmax(G(x)). The G comprises two fully connected
layers and the output of these fully connected layers is 200 and the total number of classes
(Cse) relevant to the task, respectively. Consequently, Pi represents a one-dimensional vector
with a length equivalent to Cse. Following this, we obtain the weight (Hi) of each sample
based on the task-specific features by calculating the entropy of Pi as:

Hi = κ

(
−

Cse

∑
j

Pilog(Pi)

)
, (4)

where κ(x) = 1
|x| is a function to convert the estimated entropy to a value, indicating the im-

portance of the sample based on task-specific features. As a result, the set of all Hi computed
from fse makes up the weights (Wse) allocated to all samples for species analysis. Note that
the entropy of the prediction output is a probability across several classes, representing the
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recognition confidence of the input. A greater output confidence level denotes that the pre-
diction for a sample is more accurate. Hence, we attribute this importance to the weighted
descriptor fse1 by assigning the weight to the input as,

fse1 =Wse ⊙ fse +BN( fse),

Wse = {Hi} .
(5)

Similarly, we obtain a feature fc1 from the task-common feature via the above operations.
Finally, we obtain the final morphology descriptor fsd by concatenating fse1 and fc1. Besides,
we can obtain the fused features fld for the brain region analysis task.

2.3 Training Loss
For each analysis task, we utilize the cross-entropy loss (Lce) computed from the prediction
and true label as the classification loss to train the proposed TFENet. Besides, we use the
cosine similarity (Lcom) to measure the similarities between different task-specific features.
The overall loss function is defined as,

Ltotal =
2

∑
i=1

Lcei +λ (Lcom(Fse,Fle)+Lcom(Fs,Fl)),

Lcom( f1, f2) = max(
f1 · f2

∥ f1∥2 · ∥ f2∥2
,0).

(6)

3 Experimental Results

3.1 Datasets and Evaluation Metrics
Dataset: To assess the effectiveness of our method, we randomly download 5951 PCs from
the public NeuroMorpho.org dataset [1]. These cells originate from the somatosensory neo-
cortex and medial prefrontal neocortex of rats and mice, located in L2/3, L4, L5, and L6. For
the species analysis task, this dataset comprises 2,630 rat cells and 3,321 mouse cells. For
the brain region analysis task, there are 2,350 L2/3 cells, 723 L4 cells, 2,261 L5 cells, and
617 L6 cells. For clarity, we refer to these two tasks as Task 1 and Task 2, respectively.

Evaluation metrics: We assess our approach using overall accuracy (OA), average ac-
curacy (AA), and F1-score. The values of these evaluation metrics range from 0 to 1. The
larger the value, the better the performance of our method. To enhance clarity, we convert
these values to percentages.

3.2 Implementation Details
We implement TFENet using the PyTorch framework. The TFENet adopts ResNet50 pre-
trained on ImageNet [9] as the backbone and is trained on a single 3090 GPU. We set n as
2 in RFEM and the coefficient λ of the loss function as 0.8. We utilize the Adam optimizer
with a learning rate of 0.001 over 80 epochs and set the batch size to 16. Besides, we employ
10-fold cross-validation to train our TFENet. Specifically, the dataset is divided into 10
small data sets, where the 9 small data sets serve as the training dataset and the remaining
one small dataset serves as the test dataset. During training and testing, the training set
and its corresponding test set are selected in turn. Accordingly, we conduct ten validation
experiments and report the average results of these ten experiments.
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Table 1: Comparison of different methods. The best results are highlighted in bold.
Method Feature

Task 1 Task 2
F1 OA AA F1 OA AA

LCCDNN [16] Task-agnostic 86.14 ± 0.68 86.57 ± 0.44 84.27 ± 1.70 67.62 ± 1.43 67.06 ± 0.79 62.60 ± 2.69
DRNN [17] Task-agnostic 71.94 ± 5.07 74.12 ± 3.27 69.78 ± 4.74 63.05 ± 7.32 63.33 ± 9.72 58.12 ± 1.59
TreeMoCo [4] Task-agnostic 85.28 ± 3.10 85.58 ± 2.90 82.27 ± 4.17 70.56 ± 2.49 71.88 ± 2.22 61.72 ± 2.88
Baseline Task-agnostic 85.24 ± 0.46 85.22 ± 0.48 85.13 ± 0.29 67.85 ± 0.43 68.60 ± 0.12 58.78 ± 0.79
Sun et al. [25] Task-related 87.48 ± 0.49 87.44 ± 0.48 87.60 ± 0.52 72.28 ± 0.59 72.46 ± 0.60 69.81 ± 0.23
TFENet (Ours) Task-related 90.32 ± 0.79 90.34 ± 0.81 89.99 ± 0.72 73.69 ± 0.52 74.15 ± 0.57 69.59 ± 0.69
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Figure 4: Confusion metrics of our method on Task 1 (a) and Task 2 (b).

3.3 Performance Evaluation

We compare our method with the task-agnostic analysis methods. Besides, we make a com-
parison with the method that performs the analysis task in a single-task manner without
considering the task-common and task-specific features, denoted as baseline. As shown in
Table 1, compared to the baseline, our method makes an improvement of 5.08% and 5.12
in F1 and OA for the species analysis task. Moreover, our method yields gains of 5.84%
and 5.55% in F1 and OA when analyzing the brain region of PCs. Furthermore, our method
has a relatively large gain in F1 and OA compared to the task-related method [25]. This is
because our method considers both task-common and task-specific features simultaneously.
These results demonstrate that our method can extract subtle morphological differences of
species or brain layers of PCs and effectively characterize them in a task-related manner. Al-
though the model complexity of our method is relatively larger than that of the comparison
methods [16, 17], our method is able to learn richer features and achieve better performance.
Overall, our method significantly enhances morphology feature learning, improving the per-
formance of these two analysis tasks.

In addition, we utilize the confusion matrix to explicitly demonstrate the effectiveness of
our method (as shown in Fig. 4). As illustrated in Fig. 4(a), our TFENet accurately identifies
the rat and mouse PCs with a high OA of 87.57% and 92.41%, respectively. Moreover, our
approach also achieves satisfactory results when performing the brain region analysis task.
Note that our method only yields an OA of only 49.38% for identifying L6 PCs. This is
because there are only 617 L6 PCs compared to 2,350 L2/3 PCs. Besides, the sparsity of
neuron data may introduce noise during model training. In certain cases, particularly when
learning categories with few examples, our model might not learn the fine morphological
details needed to identify these categories correctly. We will enhance the capacity of our
model through data augmentation and model simplification in future work.
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Table 2: Performance of the proposed TFENet with different modules.

RFEM GCFM Task 1 Task 2
F1 OA F1 OA

✘ ✘ 86.52 86.47 69.41 69.32
✔ ✘ 88.64 88.65 72.17 72.46
✘ ✔ 88.43 88.41 70.97 71.38
✔ ✔ 90.32 90.34 73.69 74.15

Table 3: Performance of the proposed TFENet with different backbones.

Backbone Task 1 Task 2
F1 OA F1 OA

VGG16 80.65 80.68 54.78 54.11
ResNet18 88.66 88.65 72.36 72.71
ResNet50 90.32 90.34 74.16 73.69
MobileNet 66.90 66.91 48.79 41.29

3.4 Ablation Studies

Influence of different modules: Our TFENet enhances task-specific features through RFEM
and adaptively fuses task-common and task-specific features through GCFM to obtain more
distinguishing descriptors. Here, we assess the impact of RFEM and GCFM on the TFENet.

As shown in Table 2, if we do not use the RFEM and GCFM, our approach only yields an
OA of 86.47% and 69.32% on Task 1 and Task 2, respectively. When we only utilize RFEM
to enhance the task-specific features, our method achieves OA of 88.65% and 72.46% on
Task 1 and Task 2, respectively. Besides, when we only introduce GCFM to fuse the task-
common and task-specific features, our method yields OA of 88.41% and 71.38% on Task
1 and Task 2, respectively, which are higher than that without two modules. By utilizing
both RFEM and GCFM together, our method significantly improves the performance of
the species and brain region analysis tasks. This proves that the utilization of both RFEM
and GCFM is advantageous in extracting distinguishing morphology features and enhancing
overall performance.

Effect of the number of sub-feature maps in RFEM: In RFEM, we use a parameter n
to divide the feature map into multiple sub-feature maps. Here, we investigate the effect of
varying n on the performance of our TFENet, and the results are presented in Fig. 5. When
the feature map is divided very finely (e.g., n equals 5, 6, and 7), each sub-feature map con-
tains relatively little morphology information, and the connections between branches are ig-
nored. As a result, our approach fails to accurately capture the salient morphological features
of PCs and the relationship between branches, resulting in slight performance degradation.
Our method achieves satisfactory performance when n is set to 1, 2, or 3. In these cases,
each sub-feature map not only contains a certain number of morphological features of PCs
but also retains the connection relationship between branches, thereby improving the perfor-
mance of our method. As shown in Fig. 5, the OA and F1 are optimal on Task 1 and Task 2
when n is set as 2. Consequently, we set n to 2 in other experiments.

Evaluation on different backbones: Here, we conduct experiments to evaluate our
method with different feature extractors, such as MobileNetV3-Small [7], VGG16 [23], and
ResNet18 [6]. As shown in Table 3, our method performs best when applying ResNet50 as
the backbone, outperforming that based on other backbones. When applying the VGG16
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Figure 5: OA (a) and F1-score (b) of the proposed TFENet with the different number of
sub-feature maps.

Table 4: Generalization evaluation of our TFENet evaluated on another dataset.
Method Feature

Task 1 Task 2
F1 OA AA F1 OA AA

LCCDNN [16] Task-agnostic 95.03 ± 1.17 95.34 ± 1.06 86.25 ± 3.13 79.92 ± 7.91 80.22 ± 7.17 79.51 ± 7.78
DRNN [17] Task-agnostic 91.30 ± 0.23 91.35 ± 0.19 90.63 ± 1.53 82.44 ± 5.75 82.60 ± 5.42 82.07 ± 5.83
Baseline Task-agnostic 97.46 ± 0.49 97.45 ± 0.48 95.89 ± 0.99 86.82 ± 1.63 86.79 ± 1.66 86.54 ± 1.48
Sun et al. [25] Task-related 98.30 ± 0.42 98.32 ± 0.41 96.72 ± 1.25 88.27 ± 0.94 88.27 ± 0.95 88.31 ± 0.83
TFENet (Ours) Task-related 98.88 ± 0.09 98.89 ± 0.09 97.50 ± 0.08 88.84 ± 1.31 88.89 ± 1.39 88.61 ± 1.41

and MobileNetV3-Small as the feature extractors, the performance of our method needs to
be improved, especially on Task 2 (only with OA of 54.11% and 41.29%, respectively).
Employing ResNet as the feature extractor, our approach effectively captures richer morpho-
logical features of PCs during the feature extraction phase. This effectively mitigates the
limitations imposed by the sparsity of neuronal data to a significant degree. Therefore, our
method utilizes the ResNet as the backbone in other experiments.

3.5 Generalization Evaluation

To further demonstrate the effectiveness of our method, we test it on another dataset, which
comprises PCs obtained from monkeys and rats in Layer 2/3 and Layer 5. This dataset is
randomly downloaded from the public NeuroMorpho.org dataset [1]. Specifically, this new
dataset consists of 282 L2/3 PCs and 110 L5 PCs from monkeys, and 2350 L2/3 PCs and
1442 L5 PCs from rats. For the species analysis task (denoted as Task 1), there are 392 PCs
from monkeys and 3792 PCs from rats. For the brain region analysis task (denoted as Task
2), there are 2632 L2/3 PCs and 1552 L5 PCs. Besides, we train our method from scratch and
do not perform fine-tuning based on the above experiments. The parameters during training
are set as described in the Implementation Details section.

As presented in Table 4, our approach performs well in two analysis tasks. Note that our
method precisely identifies PCs from the rat and monkey with OA of 98.89% and PCs from
different brain layers with OA of 88.89%. Compared with these task-agnostic-based meth-
ods [16, 17] and the task-related method [25], our method achieves the best performance
both on Task 1 and Task 2. Furthermore, our method, performing two analysis tasks si-
multaneously can improve the performance of each task, outperforming the baseline, which
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performs each analytics task individually. These results prove that our method has good
generalization and can be applied to more morphological analysis tasks of PCs.

4 Conclusions
In this paper, we propose a Task-related Feature Enhancement Network (TFENet) for pyra-
midal cell classification, which effectively describes the subtle morphological differences of
pyramidal cells in a task-related manner. Our TFENet captures the salient task-specific fea-
tures via mining and enhancing the key morphology region features through the Region Fea-
ture Enhancement Module. Using the Global Category-guided Fusion Module, our method
generates distinguishing morphological descriptors by adaptively fusing the task-specific and
task-common features based on the guidance of global features. Our TFENet achieves ac-
curacies of 90.34% and 74.15% on the species and brain region analysis tasks, respectively,
outperforming the task-agnostic methods. In future work, we will explore the potential of
our approach to perform multiple analysis tasks simultaneously and further improve the per-
formance of each analysis task.
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