
OH AND CHOI ET AL.: CONTROLDREAMER 1

ControlDreamer: Blending Geometry and
Style in Text-to-3D

Yeongtak Oh∗1

dualism9306@snu.ac.kr

Jooyoung Choi∗1

jy_choi@snu.ac.kr

Yongsung Kim2

libary753@snu.ac.kr

Minjun Park2

minjunpark@snu.ac.kr

Chaehun Shin1

chaehuny@snu.ac.kr

Sungroh Yoon†1,2

sryoon@snu.ac.kr

1 Department of Electrical and
Computer Engineering,
Seoul National University,
Seoul, South Korea

2 Interdisciplinary Program in
Artificial Intelligence,
Seoul National University,
Seoul, South Korea

Abstract

Recent advancements in text-to-3D generation have significantly contributed to the
automation and democratization of 3D content creation. Building upon these develop-
ments, we aim to address the limitations of current methods in blending geometries
and styles in text-to-3D generation. We introduce multi-view ControlNet, a novel depth-
aware multi-view diffusion model trained on generated datasets from a carefully curated
text corpus. Our multi-view ControlNet is then integrated into our two-stage pipeline,
ControlDreamer, enabling text-guided generation of stylized 3D models. Additionally,
we present a comprehensive benchmark for 3D style editing, encompassing a broad range
of subjects, including objects, animals, and characters, to further facilitate research on di-
verse 3D generation. Our comparative analysis reveals that this new pipeline outperforms
existing text-to-3D methods as evidenced by human evaluations and CLIP score metrics.
Project page: https://controldreamer.github.io

1 Introduction
3D content creation has recently been gathering attention, particularly in the realms of virtual
reality and game development. This evolving landscape has been profoundly impacted by
the recent advancement of 2D lifting methods. Dreamfusion’s [29] introduction of score
distillation sampling (SDS) has revolutionized and democratized the field, facilitating the
generation of 3D models by leveraging large-scale text-to-image diffusion models [1, 33, 35].
This breakthrough has enabled more intuitive and imaginative 3D content creation from
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Figure 1: Comparing text-to-3D pipeline of our ControlDreamer and MVDream. On the
right, MVDream’s output reveals a vulnerability to pre-training geometry biases, often pro-
ducing (a) unintended results such as shields or (b) stereotypical geometries related to
prompts. On the left, ControlDreamer overcomes these biases, enabling unique combina-
tions of geometry and style, even facilitating counterfactual generation in 3D models.

users’ textual descriptions. Furthering this evolution, various works show high-resolution
text-to-3D generation, employing multiple 3D representations [4, 5, 19] or variants of score
distillation sampling [10, 40]. One such approach is MVDream [38], a model that extends
the capabilities of Stable Diffusion [33], a well-known text-to-image diffusion model, by
adapting it on the Objaverse dataset [8], which consists of multi-view images of 3D objects.

However, we observe that when attempting to generate imaginative 3D models using
MVDream, it fails to seamlessly blend attributes such as geometry and style. For instance,
when given a prompt like ‘Captain America,’ the model tends to produce a 3D model of a
shield rather than the character itself. This issue likely arises due to dataset biases and the
mode-seeking nature of score distillation sampling [29], which causes the model to gener-
ate geometries that reflect dominant modes in the dataset, rather than customized or more
nuanced 3D models, such as a bulky version of Captain America (Fig. 1).

These challenges motivated us to decompose the text-to-3D pipeline into a two-stage ap-
proach given two text prompts. Initially, we generate a neural radiance field (NeRF) [22, 23]
from a geometry prompt to sculpt geometric structures, followed by converting it to a mesh
using DMTet algorithm [37] and refining both geometry and texture using a style prompt. To
address this, we present MV-ControlNet, a depth-aware multi-view diffusion model. We first
generate a paired dataset of text and multi-view images using GPT-4 [27] filtered texts and
MVDream, followed by training a depth conditioner for the frozen MVDream, according to
the principle of ControlNet [42].

In evaluations on our new benchmark, which consists of pairs of geometry and style
prompts, ControlDreamer shows superior performance in generating styles on 3D models
compared to existing two-stage pipelines. By using CLIP [30] scores and human assess-
ments, we find that our depth-aware MV-ControlNet outperforms normal and edge-aware
variants in rendering detailed 3D models. These findings confirm ControlDreamer’s ability
to produce high-quality 3D models that closely match the provided textual descriptions.
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Table 1: Comparison to previous text-to-3D generation methods. Our method is the first
two-stage pipeline designed for multi-view consistent 3D generation. Notably, it offers con-
venience by eliminating the need for annotations like bounding boxes and masks.

Method 3D Rep. Multi-Stage Annot.-Free Multi-View

ProlificDreamer [40] NeRF ✗ ✓ ✗
Fantasia3D [5] DMTet ✓ ✓ ✗
Magic3D [19] NeRF&DMTet ✓ ✓ ✗

MVDream [38] NeRF ✗ ✓ ✓

Ours NeRF&DMTet ✓ ✓ ✓

2 Related Works

2.1 Adding Conditions to Text-to-Image Models
Diffusion models like Stable Diffusion [33], trained on billions of image-text pairs [36], have
shown remarkable capabilities in generating high-quality images from text or in removing
harmful degradations from images [25]. ControlNet [42] introduces a method for adding
conditions to Stable Diffusion by using a trainable copy alongside the original frozen model
to perform specific tasks, such as depth-to-image conversion.

2.2 Text-to-3D Generation
While public datasets of 2D images are abundant, dataset of 3D assets are relatively scarce
(∼80K in Objaverse [8]). Consequently, leveraging pre-trained 2D diffusion models to cre-
ate diverse, user-customized 3D models continues to be a demanding task. To overcome such
difficulties, DreamFusion [29] introduces score distillation sampling (SDS) to enable the op-
timization of an implicit 3D model [22, 23] without any 3D dataset, utilizing a pre-trained
2D diffusion model as a prior. Despite these advantages, DreamFusion suffers from slow
scene generation and lower-quality results. To overcome these limitations, several meth-
ods are proposed involving primary optimization for NeRF and secondary optimization for
the extracted mesh [5, 19], along with improvements for SDS [3, 14, 21, 40]. In contrast
to prior 2D lifting-based methodologies, MVDream [38] fine-tunes a text-to-image diffu-
sion model [33] through joint training on large-scale 2D and 3D datasets. Consequently,
MVDream circumvents the Janus Problem and the Content Drifting Problem, consistently
generating 3D models that align accurately with the given texts. Concurrent works have de-
veloped large-scale 3D generative models [2, 39]. However, these models primarily rely on
image inputs, making them unsuitable for our objective of controlling both the geometry and
style of 3D models through text descriptions.

2.3 Text-Guided 3D Editing
In text-to-3D generation, various innovative methods have been proposed. Magic3D [19]
offers a coarse-to-fine pipeline for high-resolution 3D models, starting with NeRF and con-
verting to deformable meshes. Fantasia3D [5] divides its process into geometry and appear-
ance stages, beginning with a 3D ellipsoid and refining with DMTet. TEXTure [32] handles
a similar task of generating textures on top of geometry, but unlike our approach, it does
not allow for changes in the geometry. IT3D [6] refines initial rendered views using a 2D
ControlNet [42] and ensures multi-view consistency through a GAN loss, whereas we use a
single multi-view diffusion model. In Table 1, we outline a key gap in existing research: a
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samurai holding a katana in one hand, fire around, character, highly detailed, photorealistic, 4K, HD

Mr Bean Cartoon doing a T Pose

A highly detailed stone bust of Theodoros Kolokotronis

Captain America SupermanIron Man

SD figure of Messi

Figure 2: Main results. Our generation process begins by generating a coarse-grained geom-
etry, followed by creating a fine-grained stylized 3D model using a style prompt.

lack of methods combining multi-stage, annotation-free, and multi-view capabilities for 3D
generation. We found that current methods, especially in DMTet texture refinement, work
well only when geometry and style prompts match. Furthermore, methods using 2D models
struggle with multi-view consistency. Our ControlDreamer generates multi-view consistent
3D models by combining geometry and style specified by text prompts.

3 Method
Our ControlDreamer pipeline involves a two-stage process: first, training a coarse-grained
NeRF [22, 23] with a geometry prompt and then creating a fine-grained stylized textured
mesh [37] with a style prompt. We illustrate our pipeline in Fig. 3 and provide details in
Sec. 3.1. Then, we emphasize a depth-aware, multi-view approach in the second stage and
elaborate on the Multi-View (MV) ControlNet’s training scheme in Sec. 3.2.

3.1 ControlDreamer: Two-Stage 3D Generation

3.1.1 Geometry Stage

Here, we generate a NeRF from a given geometry prompt. The style of this NeRF is subse-
quently modified in the second stage. We optimize the NeRF by distilling probability den-
sity [26] from the pre-trained MVDream [38]. This optimization is achieved through score
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Figure 3: Illustration of ControlDreamer. (Left) Starting with a geometry prompt, we use
MVDream to generate a NeRF, ensuring consistency through 3D self-attention. (Right) The
NeRF is converted into a mesh via DMTet, followed by style generation through our MV-
ControlNet, which integrates a trainable copy (red) and employs zero-initialized convolu-
tions (white). MV-ControlNet is designed to understand geometry using multi-view depth.

distillation sampling (SDS) [29], where the diffusion model directly computes the loss gra-
dient as shown in the following equation:

∇θLSDS ≜ Et,ε

[
w(t)

(
ε̂φ (zt ;ygeo,c, t)− ε

) ∂ z
∂x

∂x
∂θ

]
, (1)

where t ∼U(tmin, tmax), w(t) denotes the weighting function, ε̂φ (zt ;y, t) represents a guided
epsilon prediction [12], ygeo is the geometry text prompt, c represents the camera parameters,
z refers to the VAE latents [16, 33] of rendered multi-view images x, and θ is the parameter
of 3D model. Note that there is no backpropagation through the diffusion model.

To leverage the multi-view consistency of MVDream, we render four views using ran-
domly selected camera parameters c in each iteration of optimization. These parameters are
uniformly sampled from a range of view angles, each maintaining consistent elevation. In
further detail, we incorporate point lighting [29], orientation loss [29], and soft shading [19].
The timestep range [tmin, tmax] is linearly annealed during the optimization process. To pre-
vent color saturation, we apply the x0-reconstruction loss, which is the epsilon reconstruction
loss weighted by the signal-to-noise ratio (SNR) [15], thus w(t) = SNR(t).

3.1.2 Style Stage

Our second stage is motivated by the coarse-to-fine optimization of [19], which is utilized
for generating high-resolution meshes. In this process, they optimize the textured mesh using
DMTet [37], which uses a deformable tetrahedral grid and employs a differentiable rasterizer
[17, 24] for efficient rendering. However, unlike the goal of [19], which is centered on high-
resolution mesh refinement, our approach leverages the DMTet algorithm for generating style
on the previously generated geometry.

In each iteration of optimization, we employ pre-trained MiDAS [31] to obtain predicted
depth maps, using the same depth estimator that is used for training our MV-ControlNet in
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Sec. 3.2. Subsequently, we optimize the mesh with the gradient computed by MV-ControlNet
as shown in the following equation:

∇θLSDS−C ≜ Et,ε

[
w(t)

(
ε̂φ (zt ;D(x),ystyle,c, t)− ε

) ∂ z
∂x

∂x
∂θ

]
, (2)

where ystyle is the style text prompt, which is used differently from ygeo. D is our MV-
ControlNet, which we later explain in Sec. 3.2. This gradient is coupled with regularizations
to refine both geometry and texture meticulously. In contrast to recent methods [5, 19, 40]
that necessitate narrow [tmin, tmax] during the refinement phase, our ControlNet allows a large
range of [tmin, tmax] with scheduled timestep annealing. This approach ensures the depth in-
formation remains intact maintaining original geometry throughout the style optimization,
even with significant timestep variations.

3.1.3 Training Details

We use the normal map consistency loss [19] and the Laplacian smoothing regularization
loss [40] to eliminate pixelated artifacts in DMTet. These allow us to generate photorealistic
3D models. Utilizing MV-ControlNet, textures are effectively modified while preserving the
initial geometry, even with significant variations in text descriptions. Furthermore, this effec-
tiveness persists in scenarios where t is sampled from t ∼ U(0.02,0.98). In the style stage,
we sample t from this range for the initial 4/5 of the total iterations, akin to the geometry
stage. Subsequently, for the remaining iterations, t is sampled from t ∼U(0.02,0.5). These
techniques differentiate MV-ControlNet from previous methods [5, 19] that rely on smaller
timesteps for mesh refinement.

3.1.4 Theoretical Discussion

The key to the success of score distillation in text-to-3D generation lies in the guidance
mechanism [12]. The guided score of Eq. 1 can be written as the following equation:

ε̂φ (zt ;ygeo) = s · (εφ (zt ;ygeo)− εφ (zt))+ εφ (zt) (3)
∝ ∇zt (s · (logp(zt |ygeo)− logp(zt))+ logp(zt)) (4)
= ∇zt (s · logp(ygeo|zt)+ logp(zt)), (5)

due to Bayes’ rule. Here, s represents the guidance scale and c and t are omitted for brevity.
The equation indicates strong guidance encourages higher text alignment p(ygeo|zt).

The effect of integrating our MV-ControlNet into score distillation can be demonstrated
similarly. The guided score in Eq. 2 can be expressed as follows:

ε̂φ (zt ;D(x),ystyle) ∝ ∇zt (s · (logp(zt |D(x),ystyle)− logp(zt |D(x)))+ logp(zt |D(x))) (6)
= ∇zt (s · log p(ystyle|zt ,D(x))︸ ︷︷ ︸

style blending

+log p(zt |D(x))︸ ︷︷ ︸
geometry

), (7)

also due to Bayes’ rule. Here, maximizing p(zt |D(x)) ensure that the optimized 3D repre-
sentation maintains the geometry, while maximizing p(ystyle|zt ,D(x)) guides the blending of
a style that suits the geometry.
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3.2 Multi-View ControlNet
As elaborated in the previous section, our pipeline generates style in the second stage by
refining the DMTet, converted from NeRF. We note the limitations of MVDream in refin-
ing DMTet, stemming from a lack of understanding of the geometry. To address this, we
introduce the Multi-View (MV) ControlNet, crucial for generating fine-grained style by un-
derstanding coarse-grained geometry.

3.2.1 Generating Dataset

To train a depth-aware multi-view model, we construct a dataset using the curated 100K high-
quality texts from OpenShape [20], filtered with GPT-4 [27] for quality assurance. Initially,
these texts are refined using BLIP [18] and Azure Cognition Services for 2D image captions
and subsequently enriched by GPT-4 to filter out uninformative content. Using MVDream,
we generate multi-view images from these texts, matching MVDream’s camera parameters
to maintain its prior knowledge. This involves generating four orthogonal views for each
text, each with uniformly distributed azimuth angles and elevation. Specifically, we randomly
sample the camera parameters in a range of [0.9, 1.1] for distance, [15, 60] for fov, and [0,
30] for elevation. Then, we generate corresponding depth maps from the generated images
using MiDAS [31]. This process, completed in 1.5 days on four A40 GPUs, involves texts
that either explicitly mention ‘3D’ or have ‘3D asset’ appended as a postfix.

3.2.2 Training MV-ControlNet

Our goal is to train a depth encoder that incorporates multi-view depth conditions into MV-
Dream, leveraging the model’s 3D consistency and generation quality. Following the ap-
proach of ControlNet [42], which involves training an additional encoder atop a frozen dif-
fusion model, we introduce multi-view depths as additional inputs to the pre-trained MV-
Dream. Specifically, a trainable copy of MVDream’s U-Net [34] encoder, including 3D at-
tentions, is tasked with encoding depths and integrated into the U-Net decoder using zero-
initialized convolutions. We train this encoder with the standard diffusion objective [13]
formalized as follows:

L= Ez∼E(x),t,ε∼N (0,1)

[∥∥ε − εφ (zt ;D(x),y,c, t)
∥∥2
]
, (8)

where E denotes the frozen VAE encoder [33], D is the trainable depth encoder, εφ is the
frozen MVDream’s U-Net, y is the text prompt, and c is the camera parameter.

4 Experiments
For both qualitative and quantitative assessments, we have created a benchmark dataset com-
prising a total of 30 pairs of geometry and style prompts. These pairs span across five
categories: Animals, Characters, Foods, General, and Objects. Qualitative samples of our
pipeline are presented in Fig. 2.

4.1 Qualitative Comparison of Multi-View Image Generation
Before evaluating 3D generation, we assess MV-ControlNet’s multi-view image generation
capabilities by comparing with several baselines as shown in Fig. 4. The baselines include
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Depth

a wooden chest with metal hardware, 3d asset

rusty old wooden treasure chest, vintage style

rusty wooden chest with metal hardware, 3d asset

Figure 4: We compare the depth-aware MV-ControlNet with the P2P [11] approach on MV-
Dream, and also against MV-ControlNet variants trained under edge and normal conditions.
On the left, source images are displayed alongside their respective conditions. Among these,
the depth-conditioned multi-view images display the most visually appealing results.

MVDream using P2P [11], an image editing method, and MV-ControlNet variants trained
under the canny edge and normal maps. Regarding MV-ControlNet variants, we observe that
canny edge maps result in unrealistic and 3D-inconsistent images, whereas normal maps
provide 3D consistency but show degraded text alignment. Conversely, using depth condi-
tioning proves most effective, leading to visually appealing and well-aligned results. This
success motivated us to choose depth-conditioned MV-ControlNet as our model.
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Figure 5: In (a), we present comparisons with previous pipelines. Hulk’s geometry from
Fig. 1, styled as Ironman, reveals that Magic3D and ProlificDreamer often produce texture
artifacts, while Fantasia3D and MVDream are prone to color oversaturation. (b) illustrates
the results under various input conditions. (c) shows the refinement process using Magic3D,
while (d) highlights the superior results achieved with our ControlDreamer.
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Figure 6: Human preference study on editability and text alignment in five prompt domains.
ControlDreamer consistently ranks highest in user preferences across all domains.

Table 2: Comparison of directional CLIP similarity on five different categories.
Domain Animals Characters Foods General Objects

Magic3D 0.218 0.280 0.236 0.247 0.217
Fantasia3D 0.191 0.250 0.256 0.240 0.208

ProlificDreamer 0.224 0.265 0.239 0.231 0.163
MVDream 2-stage 0.160 0.235 0.150 0.211 0.122

ControlDreamer 0.241 0.353 0.270 0.341 0.255

4.2 Qualitative Comparison of 3D Generation

We compare against several baselines, namely Magic3D [19], Fantasia3D [5], and Prolific-
Dreamer [40]. All these methods, including our ControlDreamer, employ the DMTet [37]
algorithm to refine textured meshes. The results of our stylization experiments using these
baseline models are illustrated in Fig. 5. With Magic3D and ProlificDreamer, we observe
some instances of failure, characterized by only partial texture changes in the geometry. This
issue arises from a misalignment between the prior knowledge embedded in Stable Diffusion
for the style prompt (e.g., the Ironman is slim) and the geometry from the previous stage.
Our MV-ControlNet addresses this misalignment by understanding the depth information
of the geometry, thereby enhancing alignment and coherence. While Fantasia3D and MV-
Dream successfully stylize the overall geometry, they tend to produce results with issues like
oversaturation or residual traits from the original geometry prompt. We invite the readers to
explore additional results on the project page.

4.3 Quantitative Comparison of 3D Generation

4.3.1 Directional CLIP Similarity

To quantitatively compare the alignment between prompt modifications and image changes
in ControlDreamer and MVDream, we evaluate the directional CLIP similarity [9] between
first and second stage 3D models on our benchmark dataset. This score measures how well
the change of rendered images align with the text directions within the CLIP space. We use
texts with three view-oriented postfixes: ‘a front view’, ‘a side view’, and ‘a back view’,
utilizing four views from each azimuth angles (0°, 90°, 180°, 270°) for the 3D samples.

In Table 2, averaged similarities and standard deviations are presented for each do-
main, across all six prompt candidates and directions. We employ the OpenCLIP ViT-L/14
model [7], trained on the LAION-2B dataset, which is different from the text encoder used
in ControlDreamer. Our method demonstrates superior performance, excelling in generating
text-aligned 3D models across all evaluated domains in our benchmark. Detailed explana-
tions of the used prompts are presented in the Appendix.
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4.3.2 Human Evaluations

We assess preference scores using Amazon Mechanical Turk (AMT) across five domains in
Fig. 6. As a result, the proposed method consistently achieves the highest preference scores
in all domains, demonstrating its effectiveness. This assessment allows for a comparative
ranking of MVDream, Fantasia3D, Magic3D, and ProlificDreamer. We assess each method-
ology using 30 3D models from each domain, with 200 human evaluators participating.
Each evaluator encounters three random samples and repeats the evaluation task three times,
resulting in about 20 evaluations per domain. For additional details, the templates for the
human evaluation are included in the Appendix.

4.4 Ablation Study
4.4.1 Variants of MV-ControlNet

In Fig. 5 (b), we compare the 3D stylization results using MV-ControlNet variants trained
under canny edge, normal, and depth conditions. With canny edge inputs, significant artifacts
appear in both RGB and normals. When using normal maps, the RGB colors in the 3D
models are less photorealistic. However, depth maps consistently produce 3D models without
artifacts in both color and normal maps, showcasing their superiority.

4.4.2 MV-ControlNet as a plug-in for prior methods

Additionally, we demonstrate a scenario where MV-ControlNet is used in the refinement
stage of existing methodologies, with identical geometry and style prompts. DreamFusion
[29] is employed to create the geometry model. We then compare the performance of MV-
ControlNet against Magic3D [19]. Fig. 5 (d) highlights MV-ControlNet’s adaptability as a
plug-in component across various methods.

5 Discussion
We introduce ControlDreamer, a two-stage pipeline to improve text alignment in text-to-3D
by decomposing the text into geometry and style prompts. To blend the geometry and style,
we train MV-ControlNet, a depth-aware multi-view diffusion model, to enhance the geom-
etry understanding during score distillation in the second stage. This integration effectively
generates stylized 3D models by aligning diverse geometries and styles given by textual
descriptions. Comparative results and theoretical analysis confirm that ControlDreamer out-
performs existing text-to-3D methods in stylizing 3D models. Additionally, through com-
parisons with normal map and canny edge variants of MV-ControlNet, we demonstrated that
depth conditioning is the most suitable for blending geometry and style.

While we improved text alignment in text-to-3D generation, some limitations remain.
First, our training on single-object datasets limited our ability to experiment with com-
plex scenes typical in 3D reconstruction. If multi-view diffusion models like ReconFu-
sion [41], trained on complex scenes, become publicly available, we could better assess
ControlDreamer’s effectiveness. Additionally, though not our primary focus, future research
could explore on various NeRF resolutions as these multi-view diffusion models advance to
multiple resolutions and aspect ratios, similar to recent 2D image generative models [28].
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