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Abstract

Understanding product dimensions can be challenging, hindering individuals from
accurately visualizing how items will fit and look within their spaces. Addressing this,
we present a novel automated approach to overlay dimensional lines onto product im-
ages, empowering users to understand each subcomponent’s size and scale. Our proposed
multi-stage approach uses 3 key components: 3DBoundDetector to identify a bounding
box around the product, QuadDetector to identify product subcomponents and Align-
Matic, a post processing algorithm to determine optimal placement of dimensional lines
to be overlaid. Additionally, we devise an AutoQA mechanism which ensures high-
quality and accurate dimension lines by filtering aesthetically poor and incorrect dimen-
sion overlays, achieving 91.14% acceptability rate at 50% actionability, thus significantly
elevating the customer experience. We benchmark our methodology against state-of-the-
art image generation techniques and present ablation studies emphasizing each compo-
nent’s importance within our pipeline.

1 Introduction
Visualizing product dimensions accurately is a common challenge, hindering individuals
from making informed decisions about how items will fit and look within their spaces,
whether for personal use, design projects, or other purposes. Textual descriptions often
confuse individuals. For instance, the term "arm height" can be ambiguous. Does it refer to
the distance from the floor to the armrest, or the seat to the armrest? Similarly, "item height"
might describe the product’s upright or flat position, creating confusion for users.

Overlaying dimensions on the product image can improve the product visualization by
providing clear, immediate context about size and proportions, enabling individuals to un-
derstand the scale of items relative to their environment at a glance. This visual clarity elim-
inates the ambiguity that arises from text-only descriptions, allowing users to better assess
whether a product meets their specific needs and preferences. Existing solutions, such as
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3D models and provided dimensional images, lack scalability and comprehensive coverage.
Thus, a scalable automated solution for overlaying dimensional entities on images is highly
desirable. To address this, we propose a novel multi-step solution comprising 3DBoundDe-
tector, QuadDetector, and AlignMatic to overlay both outer and intricate dimensional lines
directly on the main product image. Additionally, a robust Quality Assurance (QA) model
automatically filters out low-quality images, guaranteeing high accuracy and user satisfac-
tion. This approach has the potential to revolutionize the product visualization experience,
empowering individuals to make informed decisions with confidence.

2 Related Works
The field of computer vision has witnessed remarkable advancements in object detection,
driven by the development of deep learning models like R-CNN [6], Fast R-CNN [5], Faster
R-CNN [15], and Cascade R-CNN [1]. These models excel at identifying objects within
rectangular bounding boxes, achieving high accuracy and efficiency. YOLO [14] and Ef-
ficientDet [17] emerged as a popular choice due to their speed and accuracy, suitable for
real-time object detection tasks. Researchers extended object detection to text detection
(OCR), where models like EAST [20] and Textboxes++ [11] accurately detect text within
images. Recently, large models such as Grounded DINO [12] and mVIT [13] have pushed
the boundaries of object detection, enabling open-world object detection where any object
can be identified based on textual prompts.

Conventional approaches often struggle with irregular shapes or orientations, thus moti-
vating researchers to explore methods for detecting objects with arbitrary orientations, such
as ReDet [7] and Oriented R-CNN [19], which integrates rotation-invariant features and re-
gression techniques. A step further, works like Quadbox [9] and quadrilateral scene text
detectors [18] detect curvy or skewed text using quadrilateral bounding boxes, predicting
corners through regression techniques and specialized network architectures. Semantic seg-
mentation provides a more granular approach by classifying each pixel into a specific cate-
gory, offering a detailed understanding of object shapes within images. Popular models like
DeepLab [2], Mask R-CNN [8] and SAM [10] demonstrated remarkable performance across
various domains, enabling accurate boundary detection of each components within images.

We propose a novel method for generating dimensional images by automatically over-
laying dimension lines and values directly onto product images. Our method employs a
multi-stage pipeline: first, a 3D bounding box detector identifies the overall product dimen-
sions; next, a quadrilateral detection algorithm segments individual components, such as the
seat, backrest, and armrests of a chair or sofa; finally, a post-processing algorithm deter-
mines optimal placements for dimension lines and arrows, clearly illustrating entities like
item height, seat depth, and backrest height. We also introduce an automated quality assur-
ance (AutoQA) system to ensure accurate component identification and dimension values,
resulting in a highly reliable and sophisticated solution for generating dimensional product
images.

3 Problem Statement
Let AC = {a1,a2, ...,an} represent the set of relevant dimensional entities (e.g., seat depth,
backrest height, etc. for Chair) for a specific product category C. Given a product image
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Ip of product p belonging to category C, our goal is to develop a system that automatically
overlays the image with line segments and arrows, visually representing each dimensional
entity ai ∈ AC.

4 Methodology
Our proposed system for automatic dimension overlaying comprises of 4 key components.
First, 3DBoundDetector estimates a 3D bounding box that tightly encapsulates the main
product. Next, a QuadDetector identifies 2D quadrilateral regions corresponding to each
intrinsic dimensional entity. AlignMatic, subsequently determines the optimal positioning
and formatting of dimension lines to be overlaid on the product image. Finally, an AutoQA
mechanism estimates the confidence level of the generated image, automatically filtering
low-quality results. This pipeline enables fully automated dimension overlay without any
human intervention.

4.1 3DBoundDetector: For Bounding dimensional entities
The initial stage of our pipeline predicts a 3D bounding box encompassing the product,
which is later used to overlay bounding dimensional entities, i.e., width, depth and height.
For this task, we employ a lightweight approach utilizing EfficientNet [16], a highly efficient
image classification network. The final layer of the EfficientNet model is replaced with a
fully connected layer, outputting a vector of size D = 8×2. This vector encodes the (xi,yi)
coordinates of the 8 vertices of the cuboid in the 2D image. As our objective is single-
3D object detection, we bypass the complexities of multi-object detection frameworks like
YOLO-6D, opting for a simpler and more efficient approach. During inference, the edges of
the predicted bounding box are slightly expanded to avoid collisions, and line segments are
plotted to visualize the product dimensions.

4.2 QuadDetector: For Intricate dimensional entities
We address the task of localizing the start and end points of lines representing intricate enti-
ties by detecting the circumscribing quadrilateral for each of them. Even in cases where the
object’s form is curved, we define the maximum span as the entity, hence making quadrilat-
eral a suitable geometric representation. To achieve this, we introduce a novel methodology
capable of detecting arbitrary quadrilaterals, elucidated in 4.2.1. QuadDetector employs a
three-part architecture. We utilize EfficientNet as the backbone network to extract multi-
scale features from both the original input image and a processed image containing the
product’s circumscribing cuboid (output of 4.1). These features are then efficiently fused
across scales using a BiFPN network [17]. Finally, the combined features are fed into a fully
connected network responsible for predicting the presence of a quadrilateral object within
each grid cell, the parameters of the quadrilateral bounding box, and its corresponding entity
label.

4.2.1 Formulation of Detection Label

The input RGB image, with dimensions w× h pixels, is divided into a grid of k× k cells,
where each cell spans w/k× h/k pixels. For each cell, indexed as i where 1 ≤ i ≤ k2, the
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Figure 1: Model architecture of QuadDetector: Input image is passed through 3DBound-
Detector to get the bounding cuboid, which after post processing is passed to QuadDetector
as a second channel. The QuadDetector takes two input channel and extracts quadrilaterals
corresponding to each intrinsic entity by using Non-Max suppression algorithm.

model predicts a maximum of one quadrilateral. In cases where a cell falls within multiple
quadrilaterals, the nearest one (based on R2 distance) is assigned. The model output for the
ith cell, consists of three components:

1. Location vector (Qi
L): A 11-element tuple, Qi

L = {xi,yi,β ,Vj | j ∈ 1,2,3,4}, defines
the quadrilateral’s location. Here, xi and yi represent the x and y offsets from the center
of the ith cell to the quadrilateral’s centroid G, respectively. β is the angle made by the
ground truth ideal dimensional line with the horizontal. Vj = (d j,θ j) represents the
vector connecting the jth vertex to the centroid G, with j indicating the vertex number.
d j denotes the length of vector Vj, and θ j, normalized by 2π (ensuring a range between
0 and 1), represents the angle between vector Vj and the horizontal axis.

2. entity classification vector (Qi
C): This vector represents a one-hot encoding of the

intrinsic entity or category of the quadrilateral. The length of this vector is 1+ |AC|.

3. Objectness score (oi): Indicating the confidence level of a object existing within a
predicted quadrilateral. (0 ≤ oi ≤ 1)

Thereby the model produces an output with dimensions k× k× (|QC|+ |QL|+ 1) for each
image.

4.2.2 Loss function

L = λL

k2

∑
i=0

1ob j
i SSE(Qi

L, Q̂
i
L)+λC

k2

∑
i=0

1ob j
i CE(Qi

C, Q̂
i
C)+λo

k2

∑
i=0

CE(oi, ôi) (1)

The defined loss function (Equation 1) guides the model by balancing three key com-
ponents. Location vector (Qi

L) is penalised using sum of square error (SSE), whereas entity
classification vector (Qi

C) and the objectness score (oi) is penalised using cross-entropy (CE)
loss. The term 1ob j

i denotes if any quadrilateral appears in cell i. It is defined as 1 if any
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(a) (b) (c)
Figure 2: (a) Ground truth labels for 3DBound Detector (b) Encoding quadrilateral location;
(c) Ground truth labels for QuadDetector. The chair is labelled using 4 quadrilaterals for
backrest height (red), armrest height (green), seat depth (blue), seat height (grey)

ground truth quadrilateral intersects with the ith cell, else 0. Weights are assigned to each
component to allow a balanced and optimized learning process, ensuring accurate quadrilat-
eral detection and classification alongside robust objectness prediction.

4.3 AlignMatic: Optimal Intricate Dimensional Line Placement
Intrinsic entity lines might pass over the important product parts in the image and may look
visually cluttered and not appealing. To prevent this, AlignMatic identifies the optimal place-
ment of dimensional lines. Given a detected quadrilateral with a specific orientation, we
define its left and right support lines as L and R, respectively. The family of all potential
dimensional lines, D, can then be expressed as:

D = {αL+(1−α)R | −M ≤ α ≤ 1+M} (2)

where M ≤ 0.2 represents a margin extending beyond the support lines, within which the
dimensional line can reside. While any value of α within the defined range (−M ≤ α ≤
1+M), accurately represents the entity, we introduce an optimization function to determine
the placement that maximizes visual clarity and coherence. It involves:

1. Alignment Preference: Lines aligned with the left, center, or right support exhibit
superior visual clarity. Therefore, it prioritizes α values of {−M,0.5,1+M}.

2. Collision Avoidance: To prevent visual clutter and ambiguity, the set of optimal lines
for all entities, A∗ = {α∗

i |1 ≤ i ≤ |AC|}, must not intersect with each other.

3. Depth Continuity: We leverage depth information to ensure dimensional lines traverse
through smooth and continuous surfaces, avoiding abrupt transitions between object
components or background regions. Utilizing a depth map generated by DepthAny-
thing model, we minimize the CV (coefficient of variation) of depth values within the
neighborhood pixels of the optimal line Di for each entity ai, denoted by CV(N (Di)).
This constraint discourages lines from passing through multiple depth discontinuities,
resulting in a cleaner and more intuitive visualization.

f (A∗) = kA

|AC |

∑
i=1

Allign(αi)− kC

|AC |

∑
i=1

|AC |

∑
j=1
j ̸=i

Collide(Di,D j)+ kD

|AC |

∑
i=1

CV(N (Di)) (3)
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Finally, we maximize f , to search for the optimal placement variable A∗.

4.4 AutoQA

While automated dimension overlay systems offer scalability and broad product coverage,
they are susceptible to visual and dimensional inaccuracies stemming from detection errors
and inconsistencies in product dimension data. To address this challenge, we introduce Au-
toQA – an automated quality assurance framework for evaluating and filtering generated
dimension images. This framework comprises two core components: Prediction Confidence
and Dimension Scale Quality Filter, working together to ensure the accuracy and visual ap-
peal of dimension overlays.

4.4.1 Prediction Confidence

We estimate the confidence of QuadDetector by computing two values. First, Monte Carlo
Dropout Uncertainity [4]: Dropout is randomly applied to neurons within the detector’s
fully connected layers across multiple forward passes during inference. This process gener-
ates a distribution of predictions for each input, and the Co-variance (CoV) of this distribu-
tion, serves as a measure of model uncertainty for the detector. Second, we estimate entity
confidence as pi = max(softmax(Qi

C))× oi for QuadDetector, where Qi
C represents the

predicted class probabilities for the i-th quadrilateral and oi denotes the predicted objectness
score. Finally, these factors are combined into a quality score (QS): QS = pi

k+CoVi
, where

k is a constant. This score balances entity confidence with model uncertainty, providing a
comprehensive measure of prediction quality.

4.4.2 Dimension Scale Quality filter

To address the issue of incorrect dimensional values present in the dataset (can lead to over-
laying incorrect dimensional values in the images), we implement two filtering mechanisms.
These mechanisms include statistical outlier detection and ratio consistency analysis.

Statistical outlierness: For each product category and entity pair, we analyze the dis-
tribution of entity values present in the dataset. Values falling outside the 5th and 95th per-
centiles are considered outliers and are excluded from further processing.

Ratio consistency: Let DI represent the depth map generated by the DepthAnything
model, and AC = {a1,a2, ...,an} denote the set of all relevant dimensional entities for a
given product category C. Without loss of generality, we assume an corresponds to the
item_height entity, typically present across various product categories.

For each entity ai, we compute its ratio with respect to item_height, i.e.,
vai
van

, forming
a ratio vector R, where vai is the value present in the dataset for entity ai. Under the assump-
tion that the majority of data, after outlier removal, is accurate, we utilize this dataset to
fine-tune an image classifier equipped with a regression head and mean squared error (MSE)
loss. This model takes the depth map DI as input and predicts the expected ratio vector R.
During inference, we assess the consistency of each entity’s predicted ratio r̂i by comparing
it to the corresponding ratio of values in the dataset. The error rate Ei for each entity ai is
calculated as:

Ei =
1
n

n

∑
j ̸=i

δ

(
r̂ j

r̂i
,

va j

vai

)
(4)
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where δ represents a function computing the relative error between the predicted ra-
tios (r̂i) and ratios of the corresponding values in the dataset. This error rate serves as a
measure of inconsistency, enabling the identification and filtering of potentially inaccurate
dimensional values.

5 Results and Discussion

5.1 Dataset

3D-Bounds: To train the 3DBoundDetector, we generated a synthetic dataset using ≈6.3K
photorealistic 3D mesh models [3]. To ensure generality, we simulate random orientation
(pose) of the product based on it’s real-world data distributions and introducing diverse light-
ing conditions. By rendering 30 images per 3D model with random padding or cropping, we
generated a final dataset of 180K images with ground-truth 3D bounding box coordinates.

Intrincate-7k: We introduce Intricate-7k, a dataset designed for detecting quadrilaterals cor-
responding to intricate entities of furniture products. The dataset comprises 6,916 angled-
front images across 14 furniture categories. Each image contains human-annotated quadri-
lateral bounding boxes encompassing individual intricate entities, as visualized in Figure 2.
Following annotation, a post-processing step was employed to refine and filter annotations,
with subsequent re-auditing to ensure quality. The final Intricate-7k dataset, containing 6,916
images and 15,686 annotated quadrilaterals, was divided into: DTRAIN (60%) for training,
DVAL (20%) for validation and hyperparameter tuning, and DTEST (20%) for final evaluation.

5.2 Evaluation metrics

Quantitative metric: We calculate MAPE (Mean Average Percentage error) for 3D bound-
ing box detection and mean average precision (mAP) between the predicted and expected
quadrilaterals to measure the QuadDetector performance on the test set.

Human evaluation: The final generated images with the overlayed lines and dimension
values are sent to audit to a set of 6 human auditors. Every image is sent to 3 human auditors
and all auditors are asked to rate the generated image, 0 (fail) or 1 (pass), based on 2 criteria:
1. Correctness: If the overlaid dimensional lines correctly represent the intricate or bounding
box dimension entity; 2. Aestheticness: If the generated image looks clean and acceptable
to human. We use the majority vote per image and provide an average acceptance rate.

5.3 Results

Backbone network: We evaluated EfficientNet-B0 to B6 as backbone networks, adjusting
input image size accordingly (512 + φ , where φ corresponds to the EfficientNet version).
As shown in Table 1, both mAP80 and mAP90 saturate after EfficientNet-B4. A probable
reason might be that the quadrilateral labels are significantly big in size with respect to the
image and thereby increasing the image size does not enhance the correctness of the model.
Secondly the limited size of the dataset might not be enough to train the larger networks.
3D Bound Image as Secondary Channel: Investigating the role of the 3D Bound Image
(Section 4.1) as a secondary input channel, we observed significant drop in mAP (Table 2)
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Table 1: Impact of Backbone network on
QuadDetector performance

Backbone FLOPs mAP80 mAP90
EftNet-B0 2.8B 68.5 55.4
EftNet-B1 6.7B 73.4 59.8
EftNet-B2 12B 75.5 61.4
EftNet-B3 27B 77.1 62.5
EftNet-B4 58B 78.8 63.0
EftNet-B5 140B 78.9 62.7
EftNet-B6 235B 78.5 63.0

Table 2: Impact of 3D-Bound Image as
secondary channel. We present two meth-
ods (with EfficientNet-B4 as backbone):
the Single Channel approach, which does
not use the 3D-Bound Image, and the pro-
posed methodology.

Approach mAP80 mAP90
Single Channel 69.4 54.6
Dual Channel 78.8 63.0

and slower convergence in training upon removing it. This underscores its importance in
providing crucial information on object orientation and viewpoint.

5.4 Experiments: Alternative to QuadDetector

To the best of our knowledge, no existing methods do direct dimension overlay, and hence
we compare our proposed approach with several adapted methodologies:

1. Rectangular Object Detection: We fine-tuned YOLOv7 on a modified Intricate-
7k dataset where quadrilaterals were converted to rectangles. Subsequently, a post-
processing step detects the best appropriate angle of the overlay line using the output
of the Euclid model and thereby draws the intricate lines inside the bounding box.

2. Semantic Segmentation (YOLO + SAM): We use the detected bounding boxes from
YOLOv7 and apply SAM to obtain precise segmentation within those boxes. As a
post processing, the endpoints are chopped or extended to cover the segmented region.

3. Direct Image Generation with Stable Diffusion Editing: We utilized LEDITS, a
technique for editing real images via the Stable Diffusion latent space. The main image
was input to LEDITS with prompts to generate lines representing specific intricate
entities (e.g., backseat height, seat thickness).

We evaluated 140 generated images from each method through human evaluation (see 5.2).
Example outputs are shown in Figure 3, and quantitative results are summarized in Table 3.
Image acceptability denotes acceptance of all dimensional entities on the product, while
entity acceptability refers to acceptance of individual dimensional entities.

Table 3: Human evaluation result on the discussed alternative methods
Approach Image Acceptability entity Acceptability
Rectangular Object Detection 24.51% ±4.5% 45.60% ±8.9%
Semantic Segmentation (YOLO + SAM) 30.92% ±5.8% 58.64% ±10.1%
Image Generation with SD Editing (LEDITS) 0% 0%
Proposed Methodology (w/o AutoQA thresholding) 67.92% ±4.1% 86.58% ±9.2%
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(a) (b) (c) (d)
Figure 3: Comparison of dimensional image generations using various approaches: (from
left to right) a. Rectangular Object Detection, b. Semantic Segmentation, c. Image Editing
using Stable Diffusion, d. AutoDOM (Proposed methodology)

5.5 AutoQA Results

To improve the automated acceptability rate, our pipeline includes AutoQA which rates the
quality score of generation and is able to segregate poor quality generations. This allows
the pipeline to increase the acceptability rate by reducing the coverage. For the proposed
methodology, we audited 1400 final output images using human evaluation methodology 5.2
and also generated the AutoQA score. As shown in Figure 4, the proposed pipeline has an
acceptability rate of 67.92%, but with thresholding on AutoQA score, it achieves 91.14%
acceptability at 50% coverage.

6 Conclusion

In this work, we propose a novel system comprising 3DBoundDetector, QuadDetector, and
AlignMatic, which effectively identifies and positions dimensional lines to represent key
product entities. Furthermore, the AutoQA component ensures high-quality outputs by fil-
tering visually unappealing and inaccurate results. Evaluation on our Intricate-7k dataset
demonstrates significant improvements in human acceptability compared to alternative meth-
ods. With the ability to achieve a 91.14% acceptability rate at 50% coverage, AutoDOM has
the potential to greatly enhance the user experience by providing a clear and intuitive under-
standing of product dimensions.
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(a) (b) (c)
Figure 4: (a) Optimizing Acceptability Rate by adjusting AutoQA Score Thresholding. Our
proposed pipeline achieves a 91.14% acceptability rate at 50% coverage; (b) A poor quality
generation which gets filtered out by AutoQA; (c) A good quality generation
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