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Abstract

Oropharyngeal Squamous Cell Carcinoma (OPSCC) is a sub-type of head and neck
cancer linked to human papillomavirus infection (HPV). HPV-positive OPSCC patients
have an improved prognosis compared to HPV-negative OPSCC patients however, the
reasoning for this is unknown. Visualising the clinical and molecular differences in HPV
status would be highly interpretable and could aid our understanding of the impact these
distinguishing features have on patient prognosis. A generative model trained to de-
lineate features of HPV status provides both a synthetic visualisation of HPV-related
OPSCC and a classification of HPV status. Conditional diffusion models (CDMs) have
been shown to produce state-of-the-art (SOTA) quality and fidelity in the image syn-
thesis domain. Furthermore, they can generate representative Haematoxylin and Eosin
(H&E) stained histopathology images of cancerous tissue. This paper proposes two novel
weighting schemes, one of which is designed to prioritise spatial features during training
which enables the model to learn important pathological markers associated with HPV-
related OPSCC tissue. Through experimental analysis of histological data, we demon-
strate that our proposed approach improves the performance of CDMs and provides in-
sightful, interpretable features that aid our understanding of HPV-related OPSCC.

1 Introduction

Head and neck cancer ranks as the 13th most common cancer globally when including cases
of oropharyngeal cancer [1]. Squamous cell carcinoma is a sub-type of oropharyngeal cancer
that is linked to high-risk variants of HPV. HPV is a DNA tumour virus that infects the skin
and mucous membranes inside the body [4]. A study by Craig et al. [7] found that 37% of pa-
tients diagnosed with OPSCC in Northern Ireland also tested positive for HPV. Despite their
histological similarities, HPV-positive OPSCC has substantial molecular and clinical differ-
ences compared to HPV-negative OPSCC [23]. Furthermore, HPV-positive OPSCC patients
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have improved overall survival and significantly better progression-free survival rates com-
pared to HPV-negative OPSCC patients [6, 7]; although the exact reasoning for this remains
widely unknown. Further insight into the complex biology of the tumour microenvironment
(TME) of HPV-related OPSCC is required to develop tailored treatment plans and improve
overall survival and progression-free survival rates.

Generative models can create synthetic images that resemble the data on which they are
trained. Synthetic images of tissue samples could be used to establish synthetic datasets as
a proxy for real datasets. A generative model trained to learn the distinguishing perceptual
and imperceptible features of HPV-positive and HPV-negative OPSCC may be applied to
construct detailed synthetic images of HPV-related OPSCC. This could provide a deeper
understanding of how HPV status affects the TME in OPSCC patients. Diffusion models
are a class of generative models that have been shown to outperform Generative Adversarial
Networks (GANs) [12] and Variational Autoencoders (VAEs) [18] in terms of sample quality
[10]. Diffusion models learn a probability distribution over the input data by iteratively
refining the distribution following the diffusion process. This allows the model to capture
the underlying structure of the input data more effectively than GANs and VAEs, resulting in
higher-quality samples [16]. Furthermore, diffusion models can be given context alongside
the training data in the form of class labels or image embeddings which enables the model to
generate samples of a particular type. These models are referred to as conditional diffusion
models (CDMs), and have been shown to generate high-quality histopathology images of
brain cancer [20]. Additionally, Dhariwal and Nichol [10] show that the sample quality of
pre-trained CDMs can be improved further by exploiting a classifier trained on noisy images
during the diffusion sampling process.

Choi et al. [5] demonstrate that diffusion models produce higher-quality samples when
trained using their proposed perception prioritized (or P2) weighting scheme. Addition-
ally, Moghadam et al. [20] applied the P2 weighting scheme to synthesise high-quality
histopathology images. However, P2 was designed using the properties of natural images
which significantly differ from the properties of histopathology images. In this paper, we
propose alternative weighting schemes for CDMs with the objective of capturing relevant
properties of histopathology images that may aid our exploration of the key morphological
characteristics that relate HPV to OPSCC. Our contributions are as follows:

• We propose the exploitation of CDMs to generate synthetic images of HPV-related
OPSCC tissue reflective of the pathological, molecular, and clinical differences that
exist based on HPV status.

• We introduce two novel weighting schemes, bell-shaped and reverse-sigmoid, for the
training objective function to encourage the CDM to learn perceptually discriminative
features and imperceptible features respectively.

• We conduct a series of quantitative experiments using an HPV-related OPSCC dataset
to evaluate the ability of the CDM to delineate HPV status in OPSCC tissue with and
without classifier guidance.

2 Related Work

2.1 Diffusion Models for Image Synthesis
The diffusion process is comprised of two stages: forward diffusion and reverse diffusion.
Forward diffusion involves iteratively adding noise to an input image through a sequence

Citation
Citation
{Cillo, KÃ¼rten, Tabib, Qi, Onkar, Wang, Liu, Duvvuri, Kim, Soose, Oesterreich, Chen, Lafyatis, Bruno, Ferris, and Vignali1} 2020

Citation
Citation
{Craig, Anderson, amd Michaelprotect unhbox voidb@x protect penalty @M  {}Moran, Graham, Currie, Rooney, Robinson, Upile, Brooker, Mesri, Bingham, McQuaid, Jones, McCance, Salto-Tellez, McDade, and James} 2019

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Kingma and Welling} 2014

Citation
Citation
{Dhariwal and Nichol} 2021

Citation
Citation
{Ho, Jain, and Abbeel} 2020

Citation
Citation
{Moghadam, Dalen, Martin, Lennerz, Yip, Farahani, and Bashashati} 2023

Citation
Citation
{Dhariwal and Nichol} 2021

Citation
Citation
{Choi, Lee, Shin, Kim, Kim, and Yoon} 2022

Citation
Citation
{Moghadam, Dalen, Martin, Lennerz, Yip, Farahani, and Bashashati} 2023



PORTER ET AL.: OPTIMISING DIFFUSION MODELS FOR HISTOPATHOLOGY IMAGES 3

of T time steps, where class labels or image embeddings can be provided as contextual
auxiliary input. This context enables the model to capture class-specific properties from the
data distribution which allows it to generate images that reflect these properties. Reverse
diffusion employs a convolutional neural network trained to reverse the forward diffusion
process over T timesteps to recover the original input. This process is applied to random
noise during the diffusion sampling stage to produce synthetic images.

The breakthrough work on diffusion models by Ho et al. [16] utilised the framework
proposed by Sohl-Dickstein et al. [28] to demonstrate that diffusion models can generate
high-quality images at various resolutions. This requires the diffusion model to observe
different levels of detail in the training images which enables it to learn perceptual and im-
perceptible features of the data and generate more realistic images. Dhariwal and Nichol
[10] introduced architectural improvements to diffusion models based on the work of Ho
et al. [16] and Song and Ermon [29] to demonstrate that diffusion models can outperform
SOTA GANs in terms of image fidelity and diversity. Additionally, they trained a classifier
on noisy images and used the resulting gradients to guide the diffusion sampling process
towards an arbitrary class label which further improved the quality of generated samples. In
theory, classifier guidance will encourage the model to replicate the structural heterogeneity
and distinct morphological properties of OPSCC when conditioned on HPV status.

2.2 Diffusion Models in Histopathology
Diffusion models have been widely used for image generation tasks [11, 24, 27] since the
improvements introduced by [10] and [16] however, the utilisation of such models within
histopathology is limited. Moghadam et al. [20] employed a pipeline consisting of a colour
normalisation module [31], a CDM, and the P2 weighting scheme [5] to synthesise Haema-
toxylin and Eosin (H&E) stained histopathology images of brain cancer. Consistent with
the findings from [10], the results show that in terms of image quality, the diffusion model
outperforms the SOTA Progressive Growing GAN [17] which has been shown to produce
high-quality images of histopathology tissue [19]. The effect of classifier-free guidance
on histopathology image synthesis was explored by [26] and demonstrated superior per-
formance over [20]. Classifier-free guidance involves training both a conditional and an
unconditional diffusion model and combining the resulting score estimates during the dif-
fusion sampling process to achieve performance similar to that of classifier guidance [10]
without the computational overhead of training a bespoke classifier. This work explores the
effectiveness of classifier guidance on the synthesis of histopathology images and evaluates
its impact relative to classifier-free guidance and unguided diffusion.

Assessing the quality of synthetic images is a critical aspect of evaluating the efficacy of
generative models for histopathology image synthesis. In this work, the quality of randomly
generated histopathology images will be assessed by HPVNet [8], a classifier designed to
determine HPV status from H&E stained tissue of OPSCC. HPVNet will be used to provide
an indicative measure of each model’s ability to reproduce relevant biological markers asso-
ciated with HPV status however, it is critical to emphasise that HPVNet cannot replace the
expertise of a pathologist.

2.3 Redesigning the Training Objective Function
The diffusion process involves gradually corrupting an input image x0 with pre-defined noise
scales, 0 < β1,β2, ...,βT < 1, which correspond to a timestep t. The training objective of a
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diffusion model can be expressed as the sum of denoising score matching losses [32] which
measures how well the model can estimate the noise-free data distribution from the noisy
data. The objective is to minimise these loss functions to improve the performance of the
model. Ho et al. [16] proposed a simplified objective which was shown to improve sample
quality and is defined as follows:

Lsimple = ΣtλtLt , (1)

where Lt is the denoising score matching loss for a timestep t and represents the distance be-
tween two Gaussian distributions, and λt refers to the weighting scheme which has uniform
weights. λt is defined as follows:

λt = (1−βt)(1−αt)/βt , (2)

where αt := ∏
t
s=1(1−βs). We refer to λt as the default weighting scheme herein. The train-

ing objective used for the CDMs in this work follows the hybrid objective, Lhybrid , proposed
by Nichol et al. [22] which inherits the uniform weights from (2) and extends (1) by adding a
second term, λLvlb. This term represents the sum of denoising score matching losses across
all timesteps and λ is assigned the value 0.001 to maintain Lsimple as the most influential
component. This configuration reduces the number of steps required during sampling with-
out sacrificing sample quality compared to the objective defined by [16]. Formally, Lhybrid is
defined as follows:

Lhybrid = Lsimple +λLvlb, (3)

Choi et al. [5] found that diffusion models learn features according to the signal-to-noise
ratio (SNR) in three noise level stages which they define as coarse, content, and clean-up.
They modified Lsimple to force the model to focus more on the coarse and content stages to
learn salient features and less on the clean-up stage where the model learns imperceptible
features. Their proposed weighting scheme, λ ′

t , is defined as:

λ
′
t = λt/(k+SNR(t)γ), (4)

where the SNR of a corrupted image xt is calculated by SNR(t) = αt/(1−αt). We refer to
λ ′

t as the P2 weighting scheme herein. Despite being optimised for the synthesis of natural
images, the P2 weighting scheme has been shown to produce realistic histopathology images
in [20] and [26]. In this work, we investigate the effect of prioritising alternative noise level
stages during training on the synthesis of histopathology images. The aim is to establish
a training objective that is optimised to capture distinguishing perceptual and imperceptible
features of HPV-positive and HPV-negative OPSCC. A model that can highlight these distin-
guishing features would provide highly interpretable insights into the TME of HPV-related
OPSCC. Such insights may aid pathologists’ understanding of the effect of HPV status on
OPSCC and support the development of tailored treatment plans.

3 Method

3.1 Conditional Diffusion Models
Dhariwal and Nichol[10] show that conditional diffusion improves sample quality compared
to unconditional diffusion on the ImageNet dataset[9]. This is likely because ImageNet con-
tains enough samples per class to enable the model to learn differentiating features between
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classes, whereas unconditional models learn general features using the entire data distribu-
tion. Consistent with existing literature involving the synthesis of histopathology images
[2, 13, 20, 26, 34], this work applies CDMs following the architecture provided by [10]. The
training process is illustrated in Figure 1.

Class Labels 
(HPV status)

Gaussian
Noise

HPV Training Data

Forward
Diffusion

Hybrid Training
Objective LossReverse Diffusion 

(U-Net)

Weighting
SchemeTimestep, t

Conditional Diffusion Model

xt, HPV status xt-1, HPV statusx

Figure 1: Training pipeline. A high-level overview of the training process for generating
images of OPSCC tissue conditioned on HPV status.

3.2 Proposed Weighting Schemes

Two novel weighting schemes, bell-shaped and reversed-P2, are proposed using the three
noise level stages described by Choi et al. [5]. The bell-shaped weighting scheme assigns
higher weights to the content stage and lower weights to the course and clean-up stages. The
primary objective of this weighting scheme is to encourage the model to prioritise perceptu-
ally discriminative content. In terms of HPV status, this may refer to pathological markers
including p16 expression which indicates the presence of HPV infection [33]. Additionally,
this weighting scheme places less emphasis on the course and clean-up stages. This prevents
the model from focusing on course features such as colour and structure in addition to subtle
pixel differences captured during clean-up. The bell-shaped weighting scheme is constructed
as follows:

Bell-Shapedt =
1
2
∗ (−cos(2π ∗ t/T )+1), (5)

The reversed-P2 weighting scheme is the reverse arrangement of the P2 weighting scheme
such that the highest weights are assigned to the content stage followed by the clean-up stage,
with the course stage having the lowest assigned weights. The objective of this weighting
scheme is to encourage the model to prioritise replicating perceptually discriminative fea-
tures supplemented by visually indistinguishable details. The imperceptible details learned
during the clean-up stage have little to no effect on the synthesis of high-fidelity natural
images [5] however, such details within OPSCC tissue that are not easily identifiable by
the untrained eye may be indicative of HPV status. The reversed-P2 weighting scheme is
constructed as follows:

Reversed-P2t = λt/(k+SNR(T +1− t))γ), (6)
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Figure 2: Weighting Schemes. Weights of the (a) Default and P2, (b) Bell-shaped, and (c)
Reversed-P2 weighting schemes with a linear noise schedule.

3.3 Classifier Guidance
A noised-image classifier is specifically designed to classify images that have been inten-
tionally corrupted with the addition of noise. The primary objective of these classifiers is
to maintain robustness against the presence of noise in input images while still accurately
classifying them into their respective classes. During the diffusion sampling process, the re-
sultant gradients from the classifier are utilised in combination with the mean and covariance
of image features provided by the CDM to produce a perturbed Gaussian noise distribution
for each timestep t as illustrated in Figure 3. Dhariwal and Nichol [10] demonstrate that
applying classifier guidance during the diffusion sampling process of CDMs significantly
improves sample quality. In practice, individual datasets require the training of a bespoke
classifier and Ho et al. [15] show that guidance by a classifier is limited in its effective-
ness since the majority of the gradient information is irrelevant to predicting a class label.
This work evaluates the impact of classifier guidance in the domain of histopathology im-
age synthesis by assessing its effect on assisting the model in generating tissue samples of
HPV-related OPSCC that are representative of intra-class and inter-class variations.

Isotropic Gaussian
Noise Distribution

Conditional Diffusion
Model

Timestep, t

Perturbed Gaussian
Noise Distribution

Classifier

Class Labels (HPV
status)

For all t from T to 1

XT

XT-1

Gradient Scaleµ and ∑ Synthetic
Image

Figure 3: Sampling pipeline. A high-level overview of the sampling process with classifier
guidance for generating images of OPSCC tissue conditioned on HPV status.

4 Experiment

4.1 Data
We utilised an HPV dataset containing 15,228 images of H&E-stained HPV-positive (56
patients, 9438 tiles) and HPV-negative (62 patients, 5790 tiles) OPSCC tissue extracted into
263x263 tiles from whole slide images. These images were resized and centre-cropped to a

Citation
Citation
{Dhariwal and Nichol} 2021

Citation
Citation
{Ho and Salimans} 2021



PORTER ET AL.: OPTIMISING DIFFUSION MODELS FOR HISTOPATHOLOGY IMAGES 7

resolution of 256x256 as part of the data pre-processing performed by the diffusion model.
The default, P2, bell-shaped, and reversed-P2 weighting schemes were individually applied
to train 4 CDMs on the HPV dataset for 250,000 steps. To evaluate the CDMs, a reference
batch containing pre-computed statistics was created using the entire HPV dataset according
to the procedure established in [10]. Additionally, an unlabelled and unseen HPV dataset
of 9,468 HPV-positive (15 patients, 4,578 tiles) and HPV-negative (15 patients, 4,890 tiles)
images was used to compute Precision and Recall. The CDMs were used to generate 50,000
synthetic samples each which were compared to the reference batch and the unseen HPV
dataset to compute the evaluation metrics discussed in Section 4.2.

4.2 Evaluation Metrics

The primary evaluation statistics used for the CDMs include the Inception Score (IS)[25],
Fréchet Inception Distance (FID)[14] and Spatial FID (sFID) [30]. IS was shown to correlate
well with human scoring of the realism of synthetic images [3] such that a high IS is reflec-
tive of diverse images with high perceptual quality. However, as IS is entwined with the
ImageNet dataset it may not be reflective of measuring pathologically relevant morphology
that is important to a pathologist. FID and sFID are used in conjunction with IS to provide
a more quantitative perspective. FID compares the distribution of synthetic images with the
distribution of ground truth images whilst sFID considers the spatial information of the gen-
erated images in addition to comparing the real and synthetic image distributions. Low FID
and sFID scores indicate that the model generates images that are similar to the real images.
In particular, a low sFID indicates that the generated images reflect spatial features such as
textures, structure, and layout that are consistent with real images.

4.3 Quantitative Comparison of Weighting Schemes

The objective of this experiment is to evaluate the quality and diversity of images generated
by each of the four CDMs without classifier guidance on the HPV dataset. Each model was
used to randomly generate 25,000 HPV-positive and 25,000 HPV-negative synthetic images.
These batches were evaluated against the reference batch and an additional unseen dataset
containing HPV-related OPSCC images. The results are available in Table 1.

Table 1: Performance of the CDMs on the HPV dataset.
Model Guidance IS ↑ FID ↓ sFID ↓

CDM-Default ✗ 2.48 155.07 27.77
CDM-P2 ✗ 3.09 152.40 24.09

CDM-Reversed-P2 ✗ 2.92 191.56 31.15
CDM-Bell-Shaped ✗ 2.93 116.36 18.75

The choice of weighting scheme is an important consideration for improving the per-
formance of diffusion models in different applications. The bell-shaped weighting scheme
scores the lowest sFID and FID scores meaning that the resulting synthetic samples best re-
flect the structural properties, such as textures, structures, and layout, of the real HPV data
compared to the other weighting schemes. The P2 weighting scheme scores the highest IS
which indicates high perceptual quality by learning coarse features such as the global colour
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scheme however, it results in relatively high FID and sFID scores meaning that it is un-
able to extract meaningful spatial features compared to the bell-shaped weighting scheme.
This demonstrates that spatial features captured by the bell-shaped scheme are significant
for generating representative histopathology images of HPV-related OPSCC. Placing higher
weights in the course stage, as done by the default and P2 weighting schemes, distracts the
model from learning key morphological properties and perceptually discriminative details
associated with spatial features. The reversed-P2 weighting scheme produces samples with
the lowest relative quality and diversity. This is consistent with the findings of [5] whereby
the model cannot capture perceptually rich information when a greater emphasis is placed
on the clean-up stage. Equally, placing little to no emphasis on the coarse stage, as done by
the reversed-P2 weighting scheme may affect the quality and convergence of the clean-up
stage where the imperceptible details are learned. This demonstrates that focusing on im-
perceptible details alone in the clean-up stage is not significantly important for the model to
delineate HPV status. Examples of the synthetically generated data are included in Figure 4.

Default P2 Bell-Shaped Reversed-P2Reference

H
PV

+
O

PS
C

C
H

PV
-O

PS
C

C

Figure 4: CDM synthetic samples: A random selection of synthetic images produced by
the CDMs using each weighting scheme. Each weighting scheme displays an example of
synthetic HPV+ OPSCC (top) and synthetic HPV- OPSCC (bottom).

4.4 The Effect of Classifier Guidance

The objective of this experiment is to investigate the effectiveness of incorporating classifier
guidance during the sampling process of the CDMs described in Section 4.3 in terms of
sample quality and diversity. These models are referred to as GCDMs for Guided CDMs.
A 256x256 noised image classifier was pre-trained on the HPV dataset following the same
format as [10]. The classifier was used alongside the CDMs during the diffusion sampling
process to generate 50,000 images and corresponding labels for each weighting scheme. The
results are available in Table 2 and examples of the synthetically generated data are included
in 5.
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Table 2: Performance of the classifier guided CDMs on the HPV dataset.
Model Guidance IS ↑ FID ↓ sFID ↓

CDM-Default ✓ 2.50 152.35 27.34
CDM-P2 ✓ 3.00 146.37 23.11

CDM-Reversed-P2 ✓ 2.96 188.68 30.71
CDM-Bell-Shaped ✓ 2.92 115.90 18.45

The results show that classifier guidance marginally improves the FID and sFID scores
on the HPV dataset for all weighting schemes with the bell-shaped scheme producing the
best results. The IS improves slightly for most of the weighting schemes except for P2
which shows a marginal decrease. This is expected since IS is not designed to measure the
perceptual quality of pathological tissue. This raises the question as to whether training a
separate classifier is worth the additional time and computation required. Furthermore, the
addition of a classifier adds an extra layer of complexity to the model, which causes further
delays in diffusion sampling time. The effectiveness of classifier guidance depends heavily
on the quality and accuracy of the classifier used. If the classifier is not properly trained or is
not well-suited to the target distribution, the results may be sub-optimal. Moreover, classifier
guidance may not be effective for all types of data, especially if the target distribution is too
complex or poorly defined.

Default P2 Bell-ShapedReference

H
PV

+
O

PS
C

C
H

PV
-O

PS
C

C

Reversed-P2

Figure 5: GCDM synthetic samples: A random selection of synthetic images produced by
the GCDMs using each weighting scheme. Each weighting scheme displays an example of
synthetic HPV+ OPSCC (top) and synthetic HPV- OPSCC (bottom).

4.5 Analysis of Feature Representation in Synthetic Samples
This experiment provides a quantitative analysis of the models’ ability to represent relevant
features of HPV-related OPSCC. HPVNet [8] is a classifier trained to learn distinguishing
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features of HPV+ and HPV- tissue samples as part of a classification task. HPVNet is used
in this experiment to assess the models’ ability to generate images that are sufficiently rep-
resentative of known HPV-related features to enable classification. To measure this, 25,000
HPV-positive and 25,000 HPV-negative samples were randomly generated for each of the
models discussed in Sections 4.3 and 4.4. These samples were processed by HPVNet to
produce the scores shown in Table 3.

Table 3: Classification of synthetic samples generated by each model using HPVNet.
Model Guidance Accuracy ↑ F1 ↑ Precision ↑ Recall ↑

CDM-Default ✗ 0.6606 0.6421 0.6798 0.6083
✓ 0.6850 0.6651 0.7097 0.6258

CDM-P2 ✗ 0.6665 0.7005 0.6338 0.7830
✓ 0.6983 0.7253 0.6662 0.7960

CDM-Reversed-P2 ✗ 0.6436 0.6776 0.6198 0.7472
✓ 0.6604 0.6917 0.6355 0.7589

CDM-Bell-Shaped ✗ 0.6904 0.7229 0.6561 0.8049
✓ 0.7102 0.7415 0.6698 0.8304

Consistent with the results in Sections 4.3 and 4.4, the bell-shaped weighting scheme
with classifier guidance produces samples that consistently exhibit features that are repre-
sentative of the inter-class differences associated with HPV status. The CDM-P2 models
trained using the P2 weighting scheme with classifier guidance produced results that closely
align with the unguided bell-shaped CDM indicating that even without classifier guidance
the bell-shaped weighting scheme performs considerably well. Interestingly, the metrics
suggest that the majority of the generated images contain features indicative of HPV status
in OPSCC tissue for all models despite considerable colour variation in the HPV dataset.
One possible explanation for this is that the HPVNet classifier was trained using multiple
colour-based augmentations making it robust to the colour variation exhibited in the gen-
erated samples. Whilst HPVNet is a useful tool for evaluating the feature relevance in the
generated images, it is not a replacement for a pathologist’s expertise. A combination of
both approaches is required to provide a comprehensive and reliable assessment.

5 Conclusion

We present two novel weighting schemes for training CDMs on histological data and demon-
strate that insightful and interpretable features are reflected in the synthetic images. In par-
ticular, the bell-shaped weighting scheme enables the models to generate representative sam-
ples of HPV-related OPSCC tissue compared to existing methods [5]. In this work we ap-
ply HPVNet [8] as an independent assessment tool for the synthetically generated images
however, future work should employ guidance from a pathologist for cross-validation. Fur-
thermore, the results from HPVNet indicate that relevant pathological features are captured
when using the proposed weighting schemes. Future work should explore these features with
respect to the SNR to provide context on why the classification improves when prioritising
the proposed noise levels. Finally, future work should address the colour inconsistencies
associated with differing digital pathology scanners and staining protocols. This may be
addressed using colour normalisation such as [31] or [21].
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