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First, we provide figures to show the produced sequences from the sign stitching ap-
proach. Then we explain how we collect both the isolated and continuous dictionaries. Fi-
nally, we provide additional implementation details.

1 Stitching Example
Here we use the ground truth gloss labels and timings to show we can accurately recreate a
real continuous sequence. On the BSL Corpus T dataset, we use the SignBank dataset as our
dictionary which has gloss variant labels. Allowing us to select the same form of each sign.

Figure 1: An example of the sign stitching approach on the BSL Corpus T.
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2 Translation Examples

Here we share a translation example. Showing each step of the pipeline from Text-to-Gloss
(T2G) (rows 1 and 2), then Gloss-to-Pose (T2P) (rows 2 and 6) and finally Pose-to-Sign
(P2S) (rows 6 and 7). The approach is able to recreate the sequence, however with a small
variation in the sign style due to the different forms of the signs in our dictionary. Here
we are limited to only comparing against the Progressive Transformer (PT), as it is the only
model which is publicly available.

Figure 2: A Text-to-Sign (T2S) translation example on the RWTH-PHOENIX-Weather-
2014T dataset. Showing the original spoken language (Text), the corresponding glosses
(Gloss), the original video (GT Video), the ground truth pose (GT pose), the output from
the Progressive Transformer (PT), the produced stitched sequence (Stitcher), and the output
from the SignGAN module (SignGAN).

Note in columns 2 and 3 the approach is using a different form of the Sign ‘WEST’,
hence the different motion but the same handshape.

Video examples can be found here, https://github.com/walsharry/Sign_
Stitching_Demos.

3 Dictionary

In the experiments, we tested two different dictionaries: 1) collected from isolated examples,
and 2) a dictionary created from continuous data. Next, we provide further details about
each:

Isolated: Here, the signs are sourced from individuals who perform each sign in iso-
lation, typically starting from and returning to a resting position. When experimenting on
the BSL Corpus T (BSLCPT) we use the Signbank dataset [3], it contains over 3,000 signs

Citation
Citation
{Cormier, Fenlon, Johnston, Rentelis, Schembri, Rowley, Adam, and Woll} 2012

https://github.com/walsharry/Sign_Stitching_Demos
https://github.com/walsharry/Sign_Stitching_Demos


H. WALSH, B. SAUNDERS, R. BOWDEN: SIGN STITCHING 3

and includes all the lexical variants found in the BSLCPT dataset. However no such dic-
tionary exists for the RWTH-PHOENIX-Weather-2014T (PHOENIX14T) and Meine DGS
Annotated (mDGS) dataset, therefore we collect a dictionary from a range of sources such
as [6]. We find the mDGS dataset has a target vocabulary of 10,801. However, without
the gloss variant, we find the core gloss vocabulary reduces to 4,434. We collect a total of
7,206 signs to experiment with. We use the method described in Section 3.2 (Stitching),
step 1 to overcome issues with an incomplete vocabulary. To create word embeddings we
apply Facebook’s implementation of Fasttext [8]. When experimenting on the BSLCPT we
use the English implementation whereas on PHOENIX14T and mDGS we use the German
implementation.

Continuous: Here we create a dictionary using the gloss timing annotations. The signs
are taken from the test and dev data only, so that the back translation model has not seen the
signs during training. As the examples come from the continuous sign, we omit the cropping
step of the stitching pipeline. These dictionaries have an abundance of signs to choose from
when stitching. We filter the dictionary and remove short signs as these are most likely co-
articulated and therefore not suitable or out of context. We opt to randomly select the first
sign in the sequence, and subsequent signs are chosen to ensure the most natural transition.
Therefore, we select the sign from the dictionary in which the location of the wrist is closest
to the last frame of the previous sign.

4 Implementation Details

In our experiments, we conducted a grid search for optimal hyper-parameters and identi-
fied the following settings as the most effective. Our encoder-decoder translation model is
constructed with an embedding size of 512 and a feed-forward size of 1024. We find that
the optimal number of layers and heads is dataset-dependent, with smaller datasets requiring
fewer layers compared to mDGS where we use 3 layers and 4 heads. The models utilise
dropout with a probability of 0.1 [12], ReLU activations between layers [1], and pre-layer
normalisation for regularisation and training stability. Training employs a ’reduce on plateau’
scheduler with a patience of 5 and a decrease factor of 0.8. The layers are initialised using
a Xavier initializer [4] with zero bias, and during training, Adam optimization is employed
[5]. The initial learning rate is set to 10−4, and we train the model until convergence. During
decoding, we utilise a greedy search algorithm. The loss scaling factors, λy, λd , λ f and λC
are set to 1.0, 0.1, 0.3 and 0.2, respectively. When stitching we enforce a minimum sign
length, Umin of 4 frames. The cropping threshold, αcrop is dataset-dependent, we find values
between the range of 0.1 to 0.35 most effective. All sequences are subsampled to 12 frames
per second (fps) for computational efficiency.

For each dataset, we create a dictionary of 500 facial expressions. We scale the counter
loss by 0.01 and we set an embedding dimension of 512. The encoder and decoder are
initialized with the same settings as our translation model.

The angular pose representation comprises 104 angles, while the Euclidean representa-
tion consists of 61 keypoints (21 for each hand and 19 for the body and face). The face mesh
we add includes 128 keypoints, which are a subset of Mediapipe’s 478-face mesh [7].

For comparison, we train a progressive transformer on each dataset until convergence
using the parameters from [10].
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4.1 Datasets
The approach is tested on three datasets, the Public Corpus of German Sign Language, 3rd
release, the mDGS dataset [6], PHOENIX14T [2] and the BSLCPT [11]. BSLCPT contains
211 participants from 8 regions in the UK, performing 4792 individual signs from a range
of age groups. The participants perform narrative, interviews and participate in free conver-
sation. Similarly, mDGS contains 330 participants engaging in free-form signing. Whereas,
the PHOENIX14T dataset is extracted from German TV weather broadcasters and contains
over 8,000 parallel sequences.

4.2 Duration Generation
On the mDGS and BSLCPT we use the gloss time stamp annotations to generate the target
duration’s for training. However, when ground truth timing information is not available,
such as on the PHOENIX14T dataset, we propose a novel sign segmentation approach based
on the stitching method described in Section 3.2 (Stitching). Given the ground truth gloss
labels, we generate the stitched sequence, Pstitch, but without step 4 (sign resampling).

Comparing the stitch sequence and the ground truth, we find that the motion can vary due
to different lexical variants present compared to our dictionary. However, we find that the
handshape is often still consistent. So, we take the keypoints that correspond to the signer’s
hands and normalise the rotation so that the index finger metacarpal bone is fixed on the
y-axis and the palm is fixed on the xy-plane, giving PH

stitch,P
H . Our next step is to align the

two sequences so that we can infer the duration of the signs in the ground truth. For this we
apply Dynamic Time Warping (DTW), such that;

Ai, j = DTW (PH
stitch,P

H) (1)

As we know the duration of the isolated signs in the stitched sequence, by analysing the
alignment path, A j, we can infer the duration of the signs in the original ground truth se-
quence.

To evaluate this segmentation approach we calculate the duration for each gloss in the
mDGS dataset test set. We achieve a sign level frame F1-score of 0.6373 a similar score com-
pared to [9] that achieves a top score of 0.63. Validating that our stitching approach can also
be used for sign segmentation. It is worth noting our approach requires gloss information,
but is computationally inexpensive compared to the LSTM used in [9].
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