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Abstract

We present in this paper an unsupervised knowledge distillation (KD) approach,
namely QUD, for face recognition. The proposed QUD approach utilizes a queue of
features within a contrastive learning setup to guide the student model to learn a fea-
ture representation similar to its counterpart obtained from the teacher and dissimilar
from the ones that are stored in a queue. This queue is updated by pushing a batch
of feature representations obtained from the teacher into the queue and dequeuing the
oldest ones from the queue in each training iteration. We additionally incorporate a
temperature into the contrastive loss to control how sensitive contrastive learning is
to samples considered negative in the queue. The proposed unsupervised QUD ap-
proach does not require accessing the same dataset used to train the teacher model or
even for the data to have identity labels. The effectiveness of the proposed approach is
demonstrated through several sensitivity studies on different teacher architectures and
using different datasets for student training in the KD framework. Additionally, the
achieved results on mainstream benchmarks by our unsupervised QUD are compared
to state-of-the-art (SOTA), achieving very competitive performances and even outper-
forming SOTA on several benchmarks. Code and pre-trained models are available under
https://github.com/jankolf/QUD.

1 Introduction
Face recognition (FR) is a well-established technology in our daily lives and is often inte-
grated on devices with limited computational capacities, e.g. mobile phones [30, 31, 44].
However, many state-of-the-art (SOTA) FR models still rely on computationally demanding
deep neural networks (DNN) [3, 49]. To maintain the performance of such models while
reducing computational costs for implementation on edge devices, several techniques are
adopted, such as quantization [4, 33], pruning [35] or neural architecture search [5].

A promising approach to bridge the performance gap between lightweight and highly
performing models, but computationally demanding, is to utilize knowledge distillation (KD)
[5, 24, 34]. In this approach introduced by Bucila et al. [10] and popularized by Hinton
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Figure 1: Overview of the proposed unsupervised KD method QUD. Using contrastive loss,
student S is trained so that the distance of its feature f = S(x) to teacher T’s positive feature
f+ = T(x) of the same input sample x is smaller than the distance between f and a set of
negative features f− ∈ f− stored in a queue. The queue is filled with features of T from
previous iterations. After each iteration, the current features of T are enqueued and an equal
amount of the oldest features are dequeued from the queue. Only S’s parameters are updated.

et al. [24], a high-performing FR model with relatively high computational cost is used
as a "teacher" that trains, through a KD process, a relatively compact and small "student"
FR model [24, 27, 34]. KD enables the more compact student model to achieve higher
recognition results than when it is trained without the support of the teacher model [24, 26].
Early works of KD [24] utilized the class logits to distil knowledge from the teacher to the
student. In FR, as a feature extraction process, class logits distillation is not optimal, as
discriminative features must be learned, not only the respective class [3, 17, 49]. In addition,
it requires the same training data as the teacher for KD. Therefore, and beyond learning the
class logits, recent works also focused on pushing the student to learn the exact features
of the teacher [9, 20, 34, 45] or the relational properties between features of the teacher
[27, 39, 41]. The first does not provide the tolerance for the student to adapt its feature space
[34, 41] and the second typically requires labeled data [27, 39].

Toward overcoming these limitations in previous work we propose a novel unsupervised
KD approach, namely QUD. In this context, unsupervised KD refers to the fact that there
is no supervision through class labels and there is only self-supervision through the teacher
model. Our approach leverages the properties of contrastive learning (CL) [12, 50], com-
monly used for unsupervised representation learning [23]. QUD uses the student feature
output as anchor samples, the teacher feature output as positive samples that form positive
pairs with that of the student, and the set of negative samples is the feature output of the
teacher that is queued up from previous iterations, forming negative pairs with the student
output. The QUD process then updates the student so that the distance between positive
pairs is smaller than the distance between negative pairs. An overview of the QUD con-
cept is visualised in Figure 1. We include a temperature into the contrastive loss to control
the sensitivity of samples to the queue negative samples. The student therefore is not as
strictly forced to learn the exact feature representations learned by the teacher. This all can
be achieved using any pre-trained teacher model and does not require any class labels, and
thus can be used with unlabeled data, even simply using generated privacy-friendly synthetic
data. In detailed experiments, we analyse our design choices, prove the generalizability of
QUD over different teacher models and distillation datasets, make a direct comparison to the
baseline feature-based knowledge distillation, and compare to the latest SOTA works in FR
KD over a wide range of evaluation benchmarks.
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Table 1: Conceptual comparison on the design choices of knowledge distillation (KD) ap-
proaches using teacher T and student model S between our QUD and state-of-the-art KD
methods in literature. While ReFo [34] (marked with *) does not require class labels during
KD, their approach uses labels during proxy-student training.

Method

Property FitNet
[42]

KD
[24]

DarkRank
[13]

SP
[46]

CCKD
[41]

RKD
[39]

ShrinkTeaNet
[19]

Triplet-
Distillation

[20]

MarginKD
[45]

SFTN
[38]

EKD
[27]

SH-KD
[2]

ReFO
[34] QUD (Ours)

T and S require same training data ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗

Requires class labels ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗* ✗

S is required to exactly learn T’s feature space ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Limited to samples in batch ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

2 Related Work

Seminal works can be grouped into three different groups, based on their KD approach:
Response-based, feature-based, and relation-based KD.

Response-Based KD: These approaches [2, 24, 38], try to match the class output prob-
abilities, i.e. logits, of the teacher with that of the student model, e.g. through Kullback-
Leibler divergence [24].

Feature-Based KD: These approaches utilize intermediate feature representations of
the models to train students. ShrinkTeaNet [19] extracts intermediate representations of the
student model and passes them through the remaining layers in the teacher. The resulting
teacher-student feature and the teacher feature are compared by feature direction. FitNet [42]
utilized intermediate features from the student and teacher model for distillation, adding an
additional network to match both feature dimensions. Other approaches adapted FR loss
functions for KD [20, 45]. TripletDistillation [20] adopted triplet loss used in FR together
with a dynamic margin. MarginDistillation [45] used a teacher model with fixed class centers
and trained a student model using margin-penalty softmax loss and fixed class centers as
targets. ReFO [34] suggests bridging the intrinsic gap between a teacher and student model
by first training a compact model. This compact model acts as a guide in a reverse distillation
process with a teacher model. This teacher model is then used to train a compact student
model using feature-level KD. AdaDistill [9] utilizes an adaptive distillation procedure in
which the student model is trained using softmax loss with class labels that are distilled from
the teacher model used.

Relation-Based KD: This group of approaches utilizes relations between layers and
features of teacher and student models or between individual samples. DarkRank [13] intro-
duced cross-sample similarities and a ranking-based KD approach based on feature similarity
in the current batch. RKD [39] presented a KD approach that transfers structural relations of
samples in a batch from the teacher to the student using distance-wise or angle-wise losses.
CCKD [41] proposed a kernel-based method that improves the capturing of correlations be-
tween instances in a given batch and additionally proposed sampling strategies for batches.
EKD [27] presented a rank-based approach that selects relations that minimize the difference
in FR performance metrics between teacher and student.

Towards QUD: Our method introduced in this work, QUD, utilizes relations between
the feature output from the student, the teacher output from the same input (positive pair) and
the teacher output from previous batches (negative pairs) to learn relations between features.
An overview of the comparison of QUD with other KD methods is given in Table 1.

Unlike FitNet [42], KD [24], MarginKD [45], SFTN [38], and SH-KD [2], our KD
approach does not require the same training data for KD that was used for training teacher
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T. Other than FitNet [42], SP [46], CCKD [41], ShrinkTeaNet [19], Triplet-Distillation [20],
MarginKD [45], SFTN [38], EKD [27], and SH-KD [2], our approach does not require
any labeled datasets (ReFO [34] does not require class labels during KD, but during proxy-
student training). Other than FitNet [42], MarginKD [45], and ReFO [34], the student S in
our proposed QUD is not required to learn T’s feature space. Unlike any other KD approach,
QUD is not limited to samples in the current batch to extract relations or information for KD.

3 Methodology
This section first presents preliminaries on conventional KD followed by the concept of
unsupervised contrastive learning. Finally, it introduces our QUD approach, which enables
the transfer of knowledge from the teacher to its student without the need to access the class
labels of the KD training dataset. The student in our QUD is trained so that the distance
between its feature representation of the input sample x and the counterpart obtained from the
teacher is smaller than the distance between its feature representation and the ones retrieved
from the queue. The queue contains a set of feature representations obtained from the teacher
and is updated after each training iteration by enqueuing the current batch and dequeuing the
oldest feature representation. An overview of our QUD framework is presented in Figure 1.

3.1 Preliminary: Knowledge Distillation
To distill knowledge from a teacher model T to a student model S using dataset D, a general
loss [34] for face knowledge distillation uses three losses with weight terms α , β and λ and
it can be defined as:

L= αLKD +βLfeat +λLΛ. (1)

The loss LKD (response-based KD) is used to drive S to match the classification output
distribution (e.g. softmax layer) of T, using e.g. Kullback-Leibler divergence [24]. It re-
quires access to the classification layer of both pre-trained T and S and it is mostly used in
conjunction with the same dataset used to train T [24]. This imposes an additional require-
ment, namely having access to the dataset used to train the teacher. Furthermore, in the case
of FR, matching classification output directly is suboptimal [49] for face KD, as the aim
of S and T is to learn discriminative feature representations for face verification rather than
learning accurate sample classification [3, 17, 49]. Thus, recent SOTA KD approaches for
FR proposed learning to match the feature representations between S and T [27, 34, 41, 49].

The loss Lfeat (feature-based KD) is used for feature distillation [34], where for each
sample x ∈ D, the student is trained to minimize the distance between the teacher feature
f t = T(x) and its feature f s = S(x) [34, 41]. This ensures that S mimics the feature space of
T [27, 34]. Feature distillation approaches [34] do not require access to the T training dataset
or the classification layer of T. This, along with direct learning of the features, addresses the
mentioned shortcomings of response-based KD for FR. However, one remaining issue in
feature-based KD is that S has a significantly reduced capacity compared to T [14, 26, 34,
48]. The feature space of T might be too complex for S [26, 48]. For this reason, several
KD approaches have proposed either various techniques for feature distillation [20, 34, 45],
e.g. multiple training iterations or additional margins, or specially designed losses that aim
to overcome the disadvantages and limitations mentioned before, e.g. LΛ [27, 41].

The LΛ loss specifies the main task-specific loss, e.g., classification. In FR, this is mostly
achieved using margin-penalty softmax losses [45] or triplet loss [20].
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Current face KD approaches [2, 20, 27, 45] added task-specific loss functions that require
partially class labels and consider only samples within the batch for face KD. Therefore, in
this paper, we propose a novel unsupervised KD approach based on contrastive learning.
This proposed solution does not require identity labels and inherently considers the relation-
ships to samples outside of the current batch. Our novel approach named QUD uses only
LΛ with α = 0 and β = 0. In the following subsections, a short introduction to unsupervised
contrastive learning is given, followed by a detailed explanation of our QUD.

3.2 Unsupervised Contrastive Learning
Unsupervised contrastive learning (UCL) is a learning approach that aims to optimize a
feature space where the features of the same class (positive pairs) are close to each other
while the features of different classes (negative pairs) are far from each other[15, 50].

When considering UCL, e.g. for FR [7], positive pairs can be generated by heavily
augmenting input images, and negative pairs are created by sampling different images from
the dataset, e.g. using the current input batch [7, 23, 50]. As a large number of negative pairs
is crucial for learning discriminative feature representations[52], recent methods [23, 54]
utilize a queue [12, 54] of n negative samples. The queue size n determines the number of
samples that are considered negative. At the end of each iteration, the current samples in the
batch are enqueued into the queue and an equal number of samples are dequeued from it.

Given a feature f of sample x, a positive feature f+, n negative features f− in a queue f−,
f− ∈ f−, dot product as similarity metric, and temperature parameter τ [54], the contrastive
loss InfoNCE [47] is defined as [23, 47]

LCL =−log
(

exp( f · f+/τ)

exp( f · f+/τ)+∑ f−∈f− exp( f · f−/τ)

)
. (2)

The parameter τ scales the loss function and influences its sensitivity [7, 57] to the
samples from the queue that are considered negative. A lower τ value emphasizes differ-
ences between the features, which leads to a higher loss and stronger gradients [57]. On the
other hand, a higher τ value tends to be more tolerant to differences between the features
[12, 50, 57]. Tuning τ is crucial for the UCL and must be adjusted for the respective task
[12, 57]. The size n of the queue f− is an additional hyperparameter, as its size influences
the number of features that the sample is compared to [23]. The impact on the performance
of both parameters is shown later in this work.

3.3 Deriving QUD Approach
In the previous subsections, we have introduced the concepts of KD in the context of FR.
KD shows great promise in FR, although it typically relies on labeled data [27, 41]. In con-
trast, UCL offers the advantage of operating on datasets without class labels. Building upon
these insights, we propose a novel unsupervised KD method, called QUD. In this context,
unsupervised KD refers to the fact that there is no supervision through class labels, and there
is only self-supervision through the teacher model.

To build positive and n-negative pairs required by queue-based UCL, QUD utilizes pre-
trained teacher model T with frozen weights. For any input sample x in the training dataset
D, student feature f = f s = S(x) and teacher feature f+ = f t = T(x) form the positive
pair. The queue of negative features f− is incrementally built during training and contains

Citation
Citation
{Baruch, Karklinsky, Biton, Ben{-}Cohen, Lawen, and Zamir} 2022

Citation
Citation
{Feng, Wang, Hu, Yu, Wang, and Wang} 2020

Citation
Citation
{Huang, Wu, Xu, and Ding} 2022{}

Citation
Citation
{Svitov and Alyamkin} 2020

Citation
Citation
{Chuang, Robinson, Lin, Torralba, and Jegelka} 2020

Citation
Citation
{Wang and Isola} 2020

Citation
Citation
{Boutros, Klemt, Fang, Kuijper, and Damer} 2023{}

Citation
Citation
{Boutros, Klemt, Fang, Kuijper, and Damer} 2023{}

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Wang and Isola} 2020

Citation
Citation
{Weng} 2021

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Wu, Xiong, Yu, and Lin} 2018

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020

Citation
Citation
{Wu, Xiong, Yu, and Lin} 2018

Citation
Citation
{Wu, Xiong, Yu, and Lin} 2018

Citation
Citation
{van~den Oord, Li, and Vinyals} 2018

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{van~den Oord, Li, and Vinyals} 2018

Citation
Citation
{Boutros, Klemt, Fang, Kuijper, and Damer} 2023{}

Citation
Citation
{Zhang, Wu, Bayrooti, and Goodman} 2021

Citation
Citation
{Zhang, Wu, Bayrooti, and Goodman} 2021

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020

Citation
Citation
{Wang and Isola} 2020

Citation
Citation
{Zhang, Wu, Bayrooti, and Goodman} 2021

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020

Citation
Citation
{Zhang, Wu, Bayrooti, and Goodman} 2021

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Huang, Wu, Xu, and Ding} 2022{}

Citation
Citation
{Peng, Jin, Li, Zhou, Wu, Liu, Zhang, and Liu} 2019



6 KOLF, DAMER, BOUTROS: QUD: UNSUPERVISED KD FOR DEEP FACE RECOGNITION

n features f− = f t = T(x′) from the previous batches that occurred during training. In the
first training iteration, the dictionary is empty. Initially, the queue is randomly initialized,
and it is updated over the training iterations by pushing the teacher features resulting from
the current batch into the queue and dequeuing the oldest ones.

The loss used is LΛ = LCL (Equation 2), the training object for S is to predict feature
f so that the distance between f and teacher feature f+, predicted by T is smaller than the
distance between f and the n features predicted by T in previous iterations. The temperature
τ relaxes the need of S to learn the exact feature space of T.

Following this, our approach does not require that T and S share the same training data,
it does not require class labels, S is not required to exactly learn T’s feature space, and is the
first method to consider n-pair relations and not only samples from the current batch.

4 Experimental Setup
This section presents the experimental setups followed in this work.

4.1 Datasets
Train Sets: For fair comparison with previous KD approaches, we utilize MS1MV2 [17,
21] to train our student networks. It contains 5.8M images from 85k different identities.
MS1MV2 is based on MS-Celeb-1M [21] which was refined by [17]. To show the success
of our proposed method on unlabeled data, we use StyleGAN2 [28] and generate 2M unla-
beled images for student training, following [28]. In this work, this dataset is referred to as
StyleGAN2-2M. Additionally, the synthetic dataset IDiff-Face [6] is used. It contains 10k
identities with 500k images that are generated by a conditional latent diffusion model. For
ablation studies, CASIA-Webface [55] is used. It contains 494,414 images of 10,575 identi-
ties that were collected from the web. During student training, no identity labels are used in
any of the experiments.

Test Sets: Following common benchmarks, model performance is reported on a set of
diverse benchmarks: Labeled Faces in the Wild (LFW) [25], AgeDB-30 [37], Celebrities
in Frontal-Profile in the Wild (CFP-FP) [43], Cross-Age LFW (CA-LFW) [59], Cross-Pose
LFW (CP-LFW) [58], ICCV21-MFR [18], IARPA Janus Benchmark–B (IJB-B) [53] and
Benchmark–C (IJB-C) [36], MegaFace [29], and refined MegaFace dataset (MegaFace (R))
[17, 29].

Data Preprocessing: All face images are aligned and cropped to 112× 112 pixels and
normalized to [-1,1], following [17, 27, 34]. Alignment is performed with five landmarks
that are extracted using Multi-Task Cascaded Convolutional Networks (MTCNN) [56] using
the procedure described in [17].

4.2 Experimental Settings
Models: For comparison with other SOTA KD methods [20, 27, 34, 41], MobileFaceNet
[11] (referred to as MFN, 1.19M parameters and 0.45 GFLOPs) is used as a student. We
follow the common setup [27, 34, 45] and utilize a pre-trained ResNet-50 (43.59M param-
eters and 13.64 GFLOPs) [22] as teacher model. We also reported the results of our mod-
els using two additional pre-trained teacher models, ResNet-100 [22] (65.15M parameters
and 24.21 GFLOPs) and transformer-based Transface-B (124.47M parameters and 21.92
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GFLOPs) [16]. All teacher models are trained on MS1MV2 [17, 21] using ArcFace (margin
m = 0.5, scale s = 64), following [17, 27, 34]. All models use a feature size of 512 and their
weights are frozen during KD.

Ablation Study: For training of our QUD, the queue size and temperature parameters
presented in Section 3 are experimentally selected. In Section 5 we present an in-depth
sensitivity study on both hyperparameters using teacher ResNet-50 [22], student MFN [11]
and CASIA-Webface [55] as training dataset. Additionally, to examine the influence of
different training datasets not previously seen by the teacher (including synthetic ones), we
investigate the use of CASIA-Webface [55], our generated StyleGAN2-2M [28], and IDiff-
Face [6].

Training Setup: The code is implemented using Pytorch [40] and the models are trained
on two NVIDIA A100 GPUs. Student models are trained using a Stochastic Gradient De-
scent optimizer, using a batch size of 512, weight decay of 5e−4, momentum of 0.9 and initial
learning rate of 0.1, following [17, 27, 34]. Input images are augmented using horizontal flip
with a probability of 0.5, following [17, 27, 34]. The number of training epochs are 26 for
MS1MV2 [17, 21] and StyleGAN2-2M (following [3, 17]), and 40 for CASIA-Webface [55]
and IDiff-Face [6] (following [6, 32]), respectively. The learning rate is divided by 10 in the
8th, 14th, 20th and 25th epochs for MS1MV2 [17, 21] and StyleGAN2-2M, and in the 22nd,
30th and 40th epochs for CASIA-Webface [55] and IDiff-Face [6], following similar setups
in [3, 6, 17, 32].

Evaluation Metrics: We followed the evaluation protocols and metrics of each of the
evaluation benchmarks. For LFW [25], AgeDB-30 [37], CFP-FP [43], CA-LFW [59], CP-
LFW [58] the verification performance on their respective evaluation protocol is given in
verification accuracy ([%]). For IJB-B [53] and IJB-C [36] the true acceptance rates (TAR)
at false acceptance rates (FAR) of 10−4 and 10−5 are given for the 1:1 mixed verification
protocol [36, 53]. Following the ICCV-MFR [18] protocols for the Mask, Children and
Multi-Racial (MR-all) challenges, we report performance for Mask and Children with TAR
at FAR= 10−4 and for MR-all with TAR at FAR= 10−6, following [1, 18, 34]. For MegaFace
[29] and MegaFace(R) [17, 29] the rank-1 identification rate is reported using 1M distractors,
the verification accuracy is reported as TAR at FAR= 10−6, following [17, 27, 29, 34].

5 Results
This section presents an in-depth discussion of the experimental behaviour of the proposed
solution. First, by studying the sensitivity and our choice of the parameters temperature τ

and queue size n, then by analysing the applicability to variations in both teacher models
and training datasets. All this is performed on the small-scale benchmarks LFW [25], CFP-
FP [43], AgeDB-30 [37], CA-LFW [59], CP-LFW [58], and their average performance, as
well as large-scale IJB-C [36] and performance is reported as defined in 4. Finally, a de-
tailed comparison with the latest SOTA FR KD approaches is presented. In all experiments,
MobileFaceNet (MFN) [11] is used as a student and all teacher models are trained using
MS1MV2 [17, 21]. Results for experiments I) - V) are shown in Table 2 and the comparison
to SOTA (experiment VI)) is shown in Table 3.

I) Effects of temperature: As discussed in Section 3, the temperature parameter τ spec-
ifies the scaling of the loss and therefore the accentuation of feature similarity and dissimi-
larity [57]. The results of this ablation study with fixed queue size n = 1024, fixed S (MFN
[11]) and T (ResNet-50 [22]) architectures, fixed distillation data (CASIA-Webface [55]),
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Table 2: Studies on parameter selection, KD method validation, teacher architectures and
training datasets discussed in Section 5. The performance for each ablation study is reported
on benchmarks LFW, CFP-FP, AgeDB-30, CA-LFW, CP-LFW (verification accuracy [%]),
and on IJB-C (TAR at FAR of 10−4 and 10−5. The baseline results of MFN trained with-
out KD are presented in the second row of the Table. All teacher models are trained on
MS1MV2.

IJB-C

Study Method Distillation Dataset LFW CFP-FP AgeDB-30 CA-LFW CP-LFW Avg. 1e-4 1e-5
ResNet-50 (Teacher) - 99.80 97.63 97.92 96.10 92.43 96.77 96.05 93.96
MFN (Student) - 99.52 91.66 95.82 95.12 87.93 94.01 89.13 81.65

I) Temperature τ MFN + QUD (τ = 0.06, n= 1024)

CASIA-Webface [55]

99.17 93.26 94.12 93.87 89.30 93.94 88.69 75.75
MFN + QUD (τ = 0.08, n= 1024) 99.43 94.00 94.95 94.87 90.40 94.73 89.65 73.26
MFN + QUD (τ = 0.1, n= 1024) 99.55 94.14 95.67 94.78 90.50 94.93 90.28 74.96
MFN + QUD (τ = 0.2, n= 1024) 99.50 94.41 96.03 95.22 90.13 95.06 88.87 60.93
MFN + QUD (τ = 0.4, n= 1024) 99.52 94.20 95.77 94.93 89.63 94.81 89.03 65.72
MFN + QUD (τ = 0.6, n= 1024) 99.58 94.16 95.80 95.00 89.78 94.86 89.43 69.41

II) Queue Size n MFN + QUD (τ = 0.1, n= 512)

CASIA-Webface [55]

99.53 94.33 95.93 95.13 89.97 94.98 89.74 69.32
MFN + QUD (τ = 0.1, n= 1024) 99.55 94.14 95.67 94.78 90.50 94.93 90.28 74.96
MFN + QUD (τ = 0.1, n= 4096) 99.52 94.29 95.92 95.07 90.00 94.96 89.77 72.30
MFN + QUD (τ = 0.1, n= 8192) 99.53 94.36 95.60 95.03 90.45 94.99 90.10 71.01
MFN + QUD (τ = 0.1, n= 16384) 99.57 94.30 95.82 95.07 90.33 95.02 89.32 66.17

III) KD Method ResNet-50 (Teacher) - 99.80 97.63 97.92 96.10 92.43 96.77 96.05 93.96
MFN + Feature-based KD MS1MV2 [17, 21] 99.57 93.77 96.97 95.70 89.01 95.00 91.29 79.79
MFN + QUD (τ = 0.1, n= 1024) MS1MV2 [17, 21] 99.58 93.89 96.73 95.65 90.47 95.26 91.92 81.60

IV) Teacher Architectures ResNet-50 (Teacher) - 99.80 97.63 97.92 96.10 92.43 96.77 96.05 93.96
MFN + QUD (τ = 0.1, n= 1024) MS1MV2 [17, 21] 99.58 93.89 96.73 95.65 90.47 95.26 91.92 81.60

ResNet-100 (Teacher) - 99.83 98.40 98.33 96.13 93.22 97.19 96.39 94.58
MFN + QUD (τ = 0.1, n= 1024) MS1MV2 [17, 21] 99.68 93.71 97.18 95.62 90.32 95.30 92.19 85.00

TransFace-B (Teacher) - 99.85 99.17 98.53 96.20 92.92 97.33 96.55 94.15
MFN + QUD (τ = 0.1, n= 1024) MS1MV2 [17, 21] 99.58 93.36 96.65 95.72 90.15 95.09 92.80 87.45

V) Datasets ResNet-50 (Teacher) - 99.80 97.63 97.92 96.10 92.43 96.77 96.05 93.96

MFN (Student) - 99.52 91.66 95.82 95.12 87.93 94.01 89.13 81.65
MFN + Feature-based KD MS1MV2 [17, 21] 99.57 93.77 96.97 95.70 89.01 95.00 91.29 79.79
MFN + QUD (τ = 0.1, n= 1024) MS1MV2 [17, 21] 99.58 93.89 96.73 95.65 90.47 95.26 91.92 81.60

MFN (Student) - 98.97 93.21 91.40 91.27 86.42 92.25 77.46 57.75
MFN + Feature-based KD CASIA-Webface [55] 99.45 93.90 95.82 94.95 89.48 94.72 90.63 79.54
MFN + QUD (τ = 0.1, n= 1024) CASIA-Webface [55] 99.55 94.14 95.67 94.78 90.50 94.93 90.28 74.96

MFN (Student) - 97.05 79.16 81.88 89.37 78.10 85.11 22.19 3.43
MFN + Feature-based KD IDiff-Face [6] 99.30 88.79 91.93 93.53 85.40 91.79 60.01 17.31
MFN + QUD (τ = 0.1, n= 1024) IDiff-Face [6] 99.33 89.57 92.50 93.73 85.65 92.16 64.96 29.08

MFN + Feature-based KD StyleGAN2-2M 99.32 88.30 92.67 93.82 84.52 91.73 22.56 3.02
MFN + QUD (τ = 0.1, n= 1024) StyleGAN2-2M 99.42 90.21 93.88 94.13 86.13 92.76 49.95 19.35

and using different values for τ are shown in Table 2. Considering the average performance
across the smaller benchmarks and the IJB-C [36] benchmark, τ = 0.1 achieved the best
overall performance, with values around it also resulting in relatively high performance that
deteriorates comparably when moving away from τ = 0.1.

II) Effects of queue size: The queue size determines the number of samples that are
considered negative to which the current sample is compared. By increasing the number of
comparisons, the student could learn more discriminative features compared to using smaller
queue sizes. However, when training datasets contain a large number of samples per class,
the queue has a higher probability of being filled with multiple samples from the same class.
This, if it occurs more frequently, could lead to the student being trained to maximize the
distance from features of the same class, which might impact the performance of the student.
This is investigated in this ablation, where τ = 0.1, training dataset (CASIA-WebFace [55]),
S (MFN [11]) and T (ResNet-50 [22]) architectures are fixed, and queue size n is altered.
The results are shown in Table 2, where all queue sizes achieve very close results on small-
scale benchmarks. While on the large-scale benchmark IJB-C, n = 1024 achieves the best
performance.

III) Effects of QUD: To investigate whether our proposed QUD is boosting the KD per-
formance, we compare MFN [11] students trained using the baseline feature-based KD using
mean-squared-error loss and trained with QUD (τ = 0.1, n= 1024) both using teacher model
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ResNet-50 [22] on MS1MV2 [17, 21]. As shown in Table 2, the proposed QUD achieved a
higher average accuracy on small-scale benchmarks (95.26% average accuracy vs. 95.00%)
and higher TAR at all FAR of IJB-C [36], especially at FAR=10−5, in comparison to con-
ventional feature-based KD.

IV) Different teacher models: The applicability of QUD using different teacher mod-
els, ResNet-50 [22], ResNet-100 [22], and TransFace-B [16], is investigated. As shown in
Table 2, the performance of MFN [11] always increases when KD is performed using QUD
(τ = 0.1 and n = 1024), compared to MFN [11] trained without knowledge distillation (top
of Table 2). In common small-scale benchmarks, ResNet-100 [22] achieves the best aver-
age verification accuracy, followed by ResNet-50 [22] and TransFace-B [16], respectively.
On the large-scale benchmark IJB-C [36], TransFace-B [16] achieves the best TAR at the
presented FAR, with ResNet-100 [22] placed second and ResNet-50 [22] at third place.

V) Effects of training datasets: We validate that the proposed method is generalizing
across different distillation datasets, especially when the teacher training data is different
from the distillation data. These results are presented in the last group of results in Table 2.

The MFN [11] trained with ArcFace [17] (m = 0.5, s = 64, without KD) on either
CASIA-Webface [55], IDiff-Face [6], is compared to the MFN [11] after using QUD (τ = 0.1
and n = 1024) with ResNet-50 [22] (trained on MS1MV2 [17, 21]) as a teacher. The distil-
lation is performed on CASIA-Webface [55] and IDiff-Face [6]. In both cases, using QUD
(τ = 0.1 and n= 1024) instead of training from scratch using ArcFace, consistently enhances
MFN performance.

The performance also improved in most cases when using QUD (τ = 0.1 and n = 1024)
compared to the baseline of MFN [11] trained using feature-based KD. Due to a significant
amount of noisy labels in CASIA-Webface [51] the performance on large-scale IJB-C is
slightly impacted when using QUD. On all other utilized datasets, QUD outperforms feature-
based KD trained MFN on IJB-C.

The performance of MFN [11] using QUD (τ = 0.1 and n = 1024) and ResNet-50 [22]
teacher distilled on the label-free generated StyleGAN2-2M dataset is also shown (here, no
model trained without KD on that data is possible as it is not labeled). In this case, QUD
achieved higher average verification accuracy on the common benchmarks when compared
to MFN [11] trained on CASIA-Webface [55] or IDiff-Face [6] using ArcFace [17]. On the
large-scale benchmark IJB-C [36], StyleGAN2-2M trained MFN [11] with QUD (τ = 0.1
and n= 1024) achieved higher TAR at all FAR compared to MFN [11] (ArcFace [17]) trained
on the synthetic IDiff-Face [6] dataset.

VI) Comparison to SOTA: Our proposed QUD (τ = 0.1, n = 1024) is compared to
SOTA KD methods on all ten benchmarks described in Section 4.1, and the results are shown
in Table 3. QUD and all SOTA KD methods in Table 3 are using MS1MV2 [17, 21] as
distillation dataset, ResNet-50 [22] as teacher and MFN [11] as student. Not all methods
were proposed for FR [13, 24, 38, 39, 46] or evaluated on all used benchmarks [2, 20, 41, 42]
in the respective works. When available, results are obtained from [19, 27, 34, 45].

The following observations can be made from the results:
Small-Scale Benchmarks: On LFW, CFP-FP and AgeDB30 our QUD achieved com-

petitive results to recent KD methods. On CA-LFW and CP-LFW and on average accuracy,
our QUD ranked first.

Large-Scale Benchmarks IJB-B and IJB-C: QUD ranked first in IJB-B and achieved
competitive results on IJB-C on TAR at FAR=10−4.

ICCV21-MFR: Our QUD ranked first on the Mask subset of the ICCV21-MFR chal-
lenge and achieved competitive results on Children and MF-all subsets of the ICCV21-MFR
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Table 3: Overview of the evaluation performance achieved by QUD and SOTA KD methods
on the benchmarks and metrics described in Section 4.1 and Section 4.2, respectively. It
is evident that our QUD achieved competitive results on all common benchmarks including
MegaFace and TPR at FPR= 10−5 on IJB-C, when compared to the other methods.

IJB-C IJB-B ICCV21-MFR MegaFace

Method LFW CFP-FP AgeDB-30 CA-LFW CP-LFW Avg. 10−4 10−5 10−4 10−5 MF-all Children Mask Id(R) Ver(R) Id Ver

ResNet-50 (Teacher) 99.80 97.63 97.92 96.05 92.50 96.78 95.16 92.66 93.45 88.65 75.48 49.41 54.50 98.14 98.34 80.62 96.83
MFN (Student) 99.52 91.66 95.82 95.12 87.93 94.01 89.13 81.65 87.07 74.63 53.43 24.71 27.90 90.91 92.71 75.52 90.80

FitNet [42] 99.47 91.30 96.18 95.12 88.30 94.07 87.76 73.71 86.35 70.19 54.46 26.62 28.47 91.16 92.34 75.88 90.64
KD [24] 99.50 91.71 95.93 95.03 87.85 94.00 88.37 80.39 86.08 74.30 50.77 26.36 25.74 90.40 92.00 75.81 90.07
DarkRank [13] 99.55 91.84 95.60 95.07 87.77 93.97 89.28 81.62 86.76 73.75 56.82 28.84 30.07 90.76 92.41 75.80 90.66
SP [46] 99.53 92.33 96.17 95.07 88.45 94.31 88.43 78.13 86.34 72.85 54.44 26.63 29.75 91.25 92.41 75.37 90.62
CCKD [41] 99.47 91.90 95.83 95.22 88.48 94.18 87.99 78.75 85.63 72.38 55.64 27.65 30.22 91.17 92.76 75.73 90.63
RKD [39] 99.58 92.13 96.18 95.25 87.97 94.22 89.65 83.21 87.27 75.17 53.92 27.91 27.94 91.44 92.92 75.73 91.21
ShrinkTeaNet [19] 99.47 91.97 96.00 94.98 88.52 94.19 87.80 79.78 85.31 75.23 55.28 27.73 30.24 90.73 92.32 75.55 90.56
Trip.Dist. [20] 99.55 93.14 95.53 94.97 88.03 94.24 84.57 76.65 81.88 70.51 - - - 86.52 88.75 71.93 91.35
MarginKD [45] 99.61 92.01 96.55 95.13 88.03 94.27 85.71 75.00 82.97 66.25 50.73 25.14 28.54 91.70 92.96 76.34 91.31
SFTN [38] 99.48 92.77 96.30 - - - 90.96 82.67 - - 55.50 28.51 29.66 91.69 93.38 - -
EKD [27] 99.60 94.33 96.48 95.37 89.35 95.03 90.48 84.00 88.35 76.60 56.60 28.95 32.14 91.02 93.08 75.54 91.42
SH-KD [2] 99.47 94.67 96.53 - - - 91.75 85.76 - - 57.69 30.15 32.01 92.51 93.93 - -
ReFO [34] 99.55 94.51 96.92 - - - 92.23 87.55 - - 56.63 33.36 31.88 92.38 93.80 - -
ReFO+ [34] 99.65 94.77 96.42 - - - 92.41 87.80 - - 59.17 32.80 32.24 92.41 93.75 - -

QUD (Ours) 99.58 93.89 96.73 95.65 90.47 95.26 91.92 81.60 90.13 78.08 52.74 28.85 33.92 92.42 93.84 76.46 92.19

challenge.
Large-Scale Benchmark MegaFace: On MegaFace, QUD ranked first on the original

benchmark and second on the refined benchmark (R), for both MegaFace evaluation proto-
cols.

VII) Limitations and social impact: QUD indeed boosted the SOTA performances
of computationally compact FR models, but it still falls behind in comparison to compu-
tationally demanding solutions [3, 17]. This issue is especially sensitive in security and
safety-sensitive use cases. The training, as well as the KD process, of FR models commonly
involves using, sharing and collecting authentic biometric data that if managed wrongly, can
contradict with proper user consent. With the rise in synthetic data usage [8], this work takes
a leap forward and uses synthetically generated data to validate its applicability in the QUD
training.

6 Conclusion

This paper presented a novel unsupervised FR KD solution, QUD. This approach drives the
student to optimize its features so that they are placed close to the teacher features of the
same samples, but far away from queued samples from previous distillation iterations. This
results in not requiring labeled data, not forcing the student to strictly learn the exact teacher
features, and considering samples beyond the current batch. Detailed experimental analyses
were presented to build design choices and prove the applicability over different teacher
architectures and distillation datasets, even unlabeled synthetic ones. A wide comparison
with recent SOTA FR KD approaches has shown our QUD as very competitive on a large set
of benchmarks, including being the top-performing solution on many of these benchmarks.
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