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Abstract

In this work we present a novel anomaly detection dataset, Industrial Defects in the
Wild (IDW). IDW contains images of various industrial and household inspection pro-
cesses. It features real images with complex and varied perspectives from freely moving
cameras. We show this is more challenging than the well-known MVTec dataset. We also
present MultiCore (MC), a novel algorithm that achieves state-of-the-art results on the
introduced IDW dataset and popular MVtec dataset. The MC algorithm trains multiple
nearest neighbour predictors, each with different hyperparameters. We propose that an
ensemble is more powerful than any individual model. Synthetic anomalies are created
using a novel schema intended to systematically cover as many variations as possible.
The ensemble output is fed into a heatmap fusion module, which is trained in a super-
vised fashion using the synthetic anomalies and a perimeter-based loss function. On
the popular MVTec dataset, the MC algorithm achieves P-AUC score of 0.986. On the
introduced and more challenging IDW dataset, the MC algorithm achieves a P-AUC of
0.935. We verify that these results are state-of-the-art by trialing the existing top fourteen
anomaly detection algorithms which have code available. The IDW dataset can be found
at: https://github.com/alext1995/IDW, and MultiCore code can be found
at: https://github.com/alext1995/MultiCore.

1 Introduction
Many classification problems in the real world have vastly imbalanced data, with a lack of
samples for certain classes. This makes training a supervised deep learning model challeng-
ing. This is particularly common in medicine where diseased examples are very rare [31]
and in engineering where industrial defects are rare [3, 27]. Humans are able to recognise
whether a given object or query appears out of place, or more formally, does not belong
to the distribution of nominal objects. In light of this, the field of anomaly detection has
received increased attention and growth [16, 33, 37, 38, 39, 42]. Anomaly detection is a

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Rajpurkar, Irvin, Bagul, Ding, Duan, Mehta, Yang, Zhu, Laird, Ball, Langlotz, Shpanskaya, Lungren, and Ng} 2017

Citation
Citation
{Bergmann, Fauser, Sattlegger, and Steger} 2019

Citation
Citation
{Mishra, Verk, Fornasier, Piciarelli, and Foresti} 2021

Citation
Citation
{Gudovskiy, Ishizaka, and Kozuka} 2022

Citation
Citation
{Roth, Pemula, Zepeda, SchÃ¶lkopf, Brox, and Gehler} 2022

Citation
Citation
{Tsai, Wu, and Lai} 2022

Citation
Citation
{Wan, Gao, Li, and Wen} 2022{}

Citation
Citation
{Wan, YunKang, Gao, Weiming, and Li} 2022{}

Citation
Citation
{Yu, Zheng, Wang, Li, Wu, Zhao, and Wu} 2021

https://github.com/alext1995/IDW
https://github.com/alext1995/MultiCore


2 D.J.TAYLOR, MORRISON, TREGIDGO, D.F. CAMPBELL: IDW & MC

semi-supervised framework where a model only sees nominal examples during training, and
must classify examples or pixels as nominal or anomalous during inference.

The current de-facto dataset, MVTec [3], is quasi-solved. Many algorithms reportedly
score over 99% under a standard metric such as Imagewise-AUC (I-AUC). MVTec contains
homographic (non-varied perspective) images in a standardised format, with clear lighting
and orientation. This is unrealistic for many real-world problems.

In light of these issues, we make the following contributions:

1. We release a novel and challenging dataset, Industrial Defects in the Wild (IDW). This
contains images of inspections of industrial components. This is more realistic than
existing datasets as the images contain real anomalies, and the images are taken from
a moving camera, offering varied viewpoints.

2. We release MultiCore (MC), an algorithm based on an ensemble of nearest neighbour
predictors, a novel synthetic anomaly schema, and a supervised UNet. We also show
that using a perimeter-based loss boosts the results. MC achieves state-of-the-art per-
formance on the introduced IDW and the dominant MVTec datasets via the standard
I-AUC and P-AUC metrics.

Throughout this work, we refer to the nearest neighbour algorithms in the ensemble as
predictors, and the complete MultiCore instances as models.

2 Background
Initially researchers tackled visual anomaly detection using the well-known object classifica-
tion datasets such as CIFAR [21], MNIST [13] and ImageNet [12]. In these studies, certain
classes were designated as anomalous, while the remaining classes were used for training.

As the field has grown grew, specific datasets were developed to tackle the problem
across different domains [3, 4, 5, 10, 22, 26, 27, 44]. These datasets have served the commu-
nity well, but fail to provide the community with images which contain varied perspectives,
and therefore do not represent all real-world challenges. Datasets such as DAGM and BTAD
are too small and specific to represent real world processes. The Fishyscapes Web and Eye-
candies datasets contain synthetic anomalies, and the Fishyscapes Lost and Found dataset is
very small. The ShanghaiTech dataset consists of images from CCTV cameras in fixed posi-
tions, meaning the images are homographic. The MVTec dataset also contains homographic
images, created in precisely controlled conditions such as constant lighting, orientation, an-
gle, and distance.

Many families of anomaly detection algorithms exist. For a detailed review on AD al-
gorithms, we point the reader to [30, 36]. Patchcore is the most related to our work [33].
Many existing anomaly detection algorithms use synthetic anomalies alongside supervision
of some kind, such as [6, 24, 43].

VisionAD [35] intends to make the benchmarking of anomaly detection more fair. It
provides a package with the most recent and performant anomaly detection algorithms. All
algorithms are written through a standardised API, and shared data-loading, wrapper, and
evaluation code. It also introduces a new metric, Proportion Localised (PL). PL reports the
proportion of anomalies ‘found’ via classifying anomalies as found or missed through an
IoU limit. Each anomaly mask is converted into its minimum area bounding box before
comparison with the prediction. It is claimed that this provides a more interpretable method

Citation
Citation
{Bergmann, Fauser, Sattlegger, and Steger} 2019

Citation
Citation
{Krizhevsky and Hinton} 2009

Citation
Citation
{Deng} 2012

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Bergmann, Fauser, Sattlegger, and Steger} 2019

Citation
Citation
{Blum, Sarlin, Nieto, Siegwart, and Cadena} 2019

Citation
Citation
{Bonfiglioli, Toschi, Silvestri, Fioraio, and Deprotect unhbox voidb@x protect penalty @M  {}Gregorio} 2022

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{L1} 2023

Citation
Citation
{Luo, Liu, Lian, Tang, Duan, Peng, and Gao} 2019

Citation
Citation
{Mishra, Verk, Fornasier, Piciarelli, and Foresti} 2021

Citation
Citation
{Zou, Jeong, Pemula, Zhang, and Dabeer} 2022

Citation
Citation
{Pang, Shen, Cao, and vanprotect unhbox voidb@x protect penalty @M  {}den Hengel} 2020

Citation
Citation
{Thudumu, Branch, Jin, and Singh} 2020

Citation
Citation
{Roth, Pemula, Zepeda, SchÃ¶lkopf, Brox, and Gehler} 2022

Citation
Citation
{Cao, Xu, Liu, and Shen} 2023

Citation
Citation
{Li, Sohn, Yoon, and Pfister} 2021

Citation
Citation
{Zavrtanik, Kristan, and Skocaj} 2021

Citation
Citation
{Taylor, Tregidgo, Morrison, and Campbell} 2024



D.J.TAYLOR, MORRISON, TREGIDGO, D.F. CAMPBELL: IDW & MC 3

of evaluation. Due to the use of bounding box labels, it is also claimed that the noise asso-
ciated with pixel-by-pixel comparison of the prediction and target is mitigated. We use the
VisionAD package for all of experiments to ensure fair comparison of algorithms. we also
report the PL scores alongside the traditional metrics.

3 Industrial Defects in the Wild dataset

Classes Training Regular
Testing

Anomaly
Testing

Varied
Perspective

Real
(non-synthetic)

Labels-
Available Year Content

DAGM[22] 4 2,000 2,000 600 ✓ 2007 textures
Shanghai Tec[26] 13 317,398 42,883 17,090 ✓ ✓ 2018 campus
MVtec-AD[3] 15 3,629 467 1,258 ✓ ✓ 2019 industrial
Species[17] 1000 0** 0 700000 ✓ ✓ ✓ 2019 nature
StreetHazards[17] 1 5125 192 1500 ✓ ✓ 2019 self-driving
BDD-Anomaly[41] 20 - - - ✓ ✓ ✓ 2019 self-driving
Vistas-NP[15] - 8,003 - - ✓ ✓ ✓ 2020 streets
Fishyscapes Web[4] - 0* - - ✓ 2021 self-driving
Fishyscapes LF[4] - 0* - - ✓ ✓ 2021 self-driving
RoadAnomaly21[7] - 0* - - ✓ ✓ 2021 self-driving
RoadObstacle21[7] - 0* - - ✓ ✓ 2021 self-driving
BTAD[27] 3 1,799 451 290 ✓ ✓ 2021 industrial
EyeCandies[5] 10 90,398 2000 2000 ✓ ✓ 2022 candies
VisA[44] 12 9,621 962 1200 ✓ ✓ 2022 industrial

IDW (ours) 7 8,280 2,510 1912 ✓ ✓ ✓ 2024 industrial

Table 1: Comparison of IDW and other popular anomaly detection datasets. Note the
introduced IDW dataset is the first industrial dataset to contain non-synthetic and non-
homographic images, i.e. real photos from varied angles and geometries. *Hidden evalu-
ation sets published with the intention of training on the CityScapes dataset [10]. **Training
is done on the ImageNet dataset.

We release a new challenging anomaly detection dataset, Industrial Defects in the Wild
(IDW). IDW contains high-resolution varied-perspective images with varying lighting and
geometry. IDW contains pixel-wise labels of each anomalous pixel, and bounding box la-
bels of each discrete anomaly. The dataset is intended to assess how state-of-the-art AD
algorithms perform with less constrained data, such as that taken from a video feed of a
moveable camera. We emphasize that this means some images are not as high quality as
they would be if taken in controlled conditions. This is desirable as it is more representa-
tive of real-world problems. Table 1 shows a comparison between this and existing datasets.
Figure 1 shows some example images, and Table 2 contains a breakdown of each class.

This is in contrast to the MVTec dataset that contains consistent perspective and orienta-
tion. These are controlled conditions which are not representative of some real-world prob-
lems. The classes of the MVTec dataset can all be considered low complexity, with training
image sizes in the hundreds and static viewpoints. The introduced IDW dataset has fewer
classes, but the classes are bigger, with thousands of training images and varying viewpoints.
Whilst MVTec is able to test whether anomaly detection models work for low-complexity
problems, the IDW dataset will test if algorithms can scale to more complex problems. The
data consists of photo frames from videos of real inspection processes. The classes cover
various industrial processes:
BirdStrike: Inspection of turbine blades of an undisclosed engine hit by a bird strike. Some
defects are clear, while others are very subtle and require a zoomed-in view for an untrained
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Training selection of images for each class. From left to right: image, zoomed-in im-
age on anomaly, zoomed-in image with
pixel-wise label.

Figure 1: Example images from each class of the introduced IDW dataset.

human to notice.
CarBody: Inspection of surface dents and defects on a automobile. The colour and texture
of the defects are very similar to the non-defected images. This tests the ability of algorithms
to detect subtle changes in geometry.
HouseStructure: Inspection of structural components on the inside and outside of a house.
The defect components are recorded at completely different angles to the equivalent non-
defected components, forming a challenging problem.
HeadGasket: Inspection of the head gaskets inside an automobile engine. The train dataset
contains images of good quality head gaskets, whilst the anomalous data contains cracks,
warps, and oxidation to the surface. This is challenging because some of the anomalies are
very small.
NozzleGuideVane: Inspection of the nozzle guide vanes of an aircraft engine. The defects
are less subtle than some of those from the BirdStrike class. However there is less training
data, and some of these defects occur in very low lighting.
InspectionVane: Inspection of the inspection vanes inside an automobile engine. Due to
the fast movement of the camera, some of the images are blurred, up-close, and contain
reflections.
Pooled: All training, testing and anomalous images from the previous classes are pooled into
one class. A human expert is able to recognise anomalies across many domains. Therefore
we should aspire that machine learning models do the same. The contributions from each
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Class Training
Regular
Testing

Anomalous
Testing

Discrete
Anomalies

BirdStrike (BS) 1347 586 282 333
CarBody (CB) 944 156 182 273
HouseStructure (HS) 769 243 139 248
HeadGasket (HG) 499 102 59 79
NozzleGuideVane (NGV) 486 150 242 743
InspectionVane (IV) 95 18 51 260
Pooled (P) 4140 1255 956 1937

Table 2: Class breakdown of the IDW dataset. Discrete anomalies refer to discrete anoma-
lous areas (not connected to other anomalous areas).

Concatenation

Step 1 Step 2

Training

Nominal training data

Train patchcore ensemble
Hyperparameters 1

Fixed patchcore ensemble

Synthetic training data

Fixed patchcore ensemble

Synthetic training masks

su
pe

rv
is

ed
le

ar
ni

ng

SSIM + cldiceLoss

Inference

Testing data

Fixed patchcore ensemble

Final predictions

Concatenation

{patchsize   : PS1, 
 patchstride : St1,
              ...
 layer           : L1,}

Hyperparameters N
{patchsize   : PSN, 
 patchstride : StN,
              ...
 layer           : LN,}

Heatmap Fusion
Model

Heatmap Fusion
Model

Figure 2: Schema of the MultiCore algorithm.

class are not balanced, as humans do not need to balance their time between certain domains.
This class is intended to be as challenging and realistic as possible, forming a very difficult
task for algorithms.

The dataset has been created through manually labelling and filtering publicly available
images sourced under fair use [8, 14, 18, 28, 29]. This means the dataset is released with an
academic and non-commercial licence, and therefore cannot be used for commercial appli-
cations.

4 MultiCore
For the nearest neighbour estimator, we make some changes to the Patchcore algorithm as
published in [33]. In the original publication, the coreset size was calculated as a fraction
of the training size. We change this such that the coreset size is preset, and unrelated to
the dataset size. This allows the coreset size to be set to the maximum to fill the GPU
memory constraint, and is not dependent on the dataset size. We find a coreset size of 25,000
makes sufficient use of a 24GB GPU. The original publication used Euclidean distance for
the coreset sub-sampling and inference. We create an option for other distance metrics to be
used. We also allow the patch size and patch stride to be adjusted. We refer to this modified
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algorithm as Patchcore+.
A schema of the MultiCore (MC) algorithm is shown in Figure 2. The algorithm com-

prises an ensemble of Patchcore+ predictors, where each predictor has different hyperparam-
eters. The selection of these hyperparameter sets is done using synthetic training anomalies
to avoid test set leakage. The synthetic anomaly algorithm is discussed in Section 4.1. The
hyperparameter set selection is discussed in Section 4.2. For each hyperparameter set, a
Patchcore+ predictor is individually trained on the training data. This gives a set of predic-
tors, which during inference each produce individual heatmaps. To create a final prediction,
these heatmaps need to be fused into a single heatmap. To achieve this, a Heatmap Fusion
Module (HFM) is used, which is discussed in Section 4.4.

During inference, a test image is put through each estimator to form a set of heatmaps,
and these heatmaps are concatenated and put through the HFM, which produces a final pre-
diction heatmap.

4.1 Stratified Synthetic Anomalies
We introduce a novel method of creating synthetic anomalies, Stratified Synthetic Anomalies
(SSA). Our goal is to create a set of anomalies that systematically cover as many variations
as possible. To avoid leakage, no statistics or information from any test datasets are used.
To make the anomalies as general as possible, we employ a stratified schema. The synthetic
anomalies are created by applying masked noise over a randomly chosen image from the
training set, where the mask serves as the ground truth for the resulting image.

Firstly, we discuss the mask generation process. In order for the masks to be represen-
tative of as many defect sizes as possible, 29 buckets are created corresponding to indices n
from 1 to 29, with K images per bucket. For an image width d and bucket n, anomaly shapes
are created with a scale of roughly d/n. To create the shapes, a random polygon generation
algorithm [1] is employed, which uniformly samples a shape between 3 and 7 points. The
shape is then chosen to either remain unstretched, stretched in the y direction, or stretched in
the x direction, with probabilities of 0.5, 0.25, and 0.25 respectively. In the case of stretch-
ing, a value was uniformly sampled between 0.05 and 1, and the aspect ratio was set as the
reciprocal of this number.

Figure 3: Demonstration of various masks for different
buckets n. These are overlaid for demonstration purposes,
note each image contains 1-10 anomalies.

The anomalies are sys-
tematically positioned. For
each bucket n, each anomaly
is centered on one point of an
equally spaced nxn grid. If
K<n*n, then these grid points
are uniformly sampled with
replacement. Finally a small
perturbation of +/-0.5*d/n is
added to each anomaly, to en-
sure each anomaly does not
lie in the center of its desig-
nated area. This results in a stratified set of masks which systematically cover scale, aspect
ratio, and position. We require that some masks have more than one anomaly. We use a to
represent the number of anomalies in a mask. For each a value between 2-7, we require m
masks. We select a maximum value of 7 as we believe it is very unlikely that a test image
has than 10 anomalies. To create test samples with more than one anomaly, non-overlapping
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masks from the masks already created were randomly selected and combined until the value
of m is reached. This means a proportion of the test images have 2-7 anomalies. Figure 3
shows many of these masks overlaid for different buckets, to give the reader an idea of the
types of shapes created. Note that for smaller anomalies, the stratified sampling of placement
means they cover the whole image. Note this image shows many of these masks overlaid,
when in reality, each mask only has 1-7 anomalies.

Figure 4: Demonstration of synthetic noise applied to im-
ages from the introduced IDW.

The above schema will
give t=29*k + 6*m masks.
Note that we also use r regular
images (no anomalies added)
with zeroed masks for train-
ing. We use values k, m, and
r values of 60, 20, and 200
respectively. This results in
2060 masks.

We find no difference
when using Perlin noise or
Gaussian noise. We trial fixed
values of Gaussian noise, and Gaussian noise uniformly sampled in a given range. We find
our algorithm to perform better with a point value of Gaussian noise as opposed to uniformly
sampled noise. However, we find the model to be relatively nonsensitive to the selected value
of noise. We believe that this is because the supervision allows the model to calibrate to the
weight of synthetic noise used. We find 0 centered noise with a standard deviation of 0.5
works. Figure 4 shows a demo of some synthetic anomalies.

4.2 Hyperparameter selection

The underlying assumption of MultiCore is that the combination of many different nearest
neighbour predictors is better than any individual predictor. Here the hyperparameters values
are systematically chosen for the combination of predictors. We vary patchsize, patchstride,
and distance metric. Patchsize can take any value from [3, 1, 5, 7]1, patchstride can take
any value from [1, 3, 5], and the distance metric can be euclidean, cosine, minkowski3, or
manhatten. We make a Cartesian product of each hyperparameter which gives a list of unique
Hyperparameter Sets (H), covering every possible combination. We refer to a unique set of
hyperparameters as h.

For each combination, we train a Patchcore+ predictor on the bottle (MVTec) and Bird-
Strike (IDW) classes, We use synthetic anomalies to test this. These are produced as de-
scribed above, and are identical for each predictor. Note we do not use any testing data
from the bottle or BirdStrike classes, we only use the training images and synthetic test data.
Each predictor gives an array of predictions, which correspond to a hyperparameter set. We
intend to find the group of predictors, which can be combined to produce the best score on
a given metric. We combine the output from a group of predictors by taking the mean of
their normalised predictions, then calculating the metric as normal. We refer to this score
as the ‘coverage’ of a group of predictors. This coverage shows how well a combination of
predictors alleviates the errors of any individual predictors when combined. We propose that
predictor combinations with better coverage will perform better overall in the MC algorithm,

1The unusual order is deliberate to ensure the original hyperparameter set from [33] comes first.
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where the HFM will combine the outputs from each predictor.
We use P-AUC as the metric to evaluate coverage. We wish to final the list of hyper-

parameters sets h, whih produces the best coverage. The computation cost of brute force
testing the coverage of each combination of predictors is infeasible. We assume the best
predictor uses the original hyperparameters from [33], and therefore, we start with this pre-
dictor. We combine this predictor with every other, and calculate the scores. The predictor
corresponding to the best score is added to the list of final predictors. This process is then
repeated, adding more predictors to the final list. When the desired metric does not increase,
the process is finished.

Table 3 shows the hyperparameters of the final predictor selections, and Table 4 shows
the coverage values for various metrics. We notice that as we include more predictors, the
increase in scores decrease.

predictor
#

Patch
size

Patch
stride Distance

1 3 1 euclidean
2 1 1 minkowski3
3 7 3 euclidean
4 3 3 euclidean
5 7 1 euclidean
6 1 3 euclidean
7 1 1 euclidean
8 3 5 euclidean

Table 3: Hyperparameters of the final
predictors.

Predictor
coverage I-AUC P-AUC P-AUPRO PL

1 0.992 0.976 0.901 0.833
1-2 0.995 0.981 0.923 0.862
1-3 0.996 0.983 0.944 0.884
1-4 0.998 0.984 0.956 0.889
1-5 1 0.984 0.963 0.901
1-6 1 0.985 0.969 0.909
1-7 1 0.985 0.973 0.913
1-8 1 0.985 0.973 0.914

Table 4: Coverage values across the syn-
thetic anomalies.

4.3 Heatmap Fusion Module

We use the Unet from [32] for the HFM. The accepts the concatenated predictions from the
ensemble. We find that dice, L1 and MSE loss functions are not performant. SSIM loss
is commonly used for segmentation tasks. We find this loss works well. However, we see
a boost in performance by adding a perimeter based loss. Work from the medical imaging
community [19] has found that perimeter loss functions are able to increase the performance
of segmentation problems where organs tend to have awkward and small shapes. We propose
that irregular organ shapes share features with industrial anomalies. We find the cldiceloss
from [19], the perimeter version of the dice loss, works best when added to the SSIM loss.

4.4 Training procedure

The prediction from each Patchcore+ predictor is normalised against the mean and standard
deviation of the train predictions from the respective Patchcore+ predictor. For the supervi-
sion of the HFM, a learning rate of 1e-5 is used, with weight decay of 1-e5, gradient clipping
of 1, and root mean square prop optimisation with momentum of 0.999. Each predictor is
trained for 300 epochs. We use a synthetic anomaly set of size of 4000 (s=2000). We run
three variants of the MC algorithm, MC2, MC4, and MC8, which use 2, 4, and 8 Patchcore+
predictors respectively. We use a Nvidia RTX3090 GPU (24Gb) for our experiments.
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I-AUC P-AUC P-AUPRO PL [35]

MC8 (ours) 0.9992 0.983 0.908 0.887
MC4 (ours) 0.9994 0.986 0.912 0.888
MC2 (ours) 0.997 0.985 0.927 0.891
CFA[23] 0.981 0.985 0.922 0.87
FastFlow[42] 0.991 0.984 0.920 0.883
MSFlow[9] 0.990 0.983 0.896 0.828
PEFM[39] 0.979 0.981 0.924 0.849
Reverse Distillation[11] 0.992 0.981 0.929 0.89
Patchcore[33] 0.983 0.980 0.911 0.885
CFlow[16] 0.973 0.980 0.899 0.829
FastFlow+AltUB[20, 42] 0.988 0.976 0.884 0.881
EfficientAD[2] 0.991 0.975 0.861 0.77
PFM[38] 0.980 0.975 0.913 0.836
SimpleNet[25] 0.963 0.975 0.874 0.807
CDO[6] 0.942 0.974 0.915 0.842
AST[34] 0.934 0.959 0.844 0.723
MemSeg[40] 0.963 0.881 0.539 0.328

MVTec: Ranked using P-AUC; I-AUC,
AUPRO, and PL[35] also shown.

I-AUC P-AUC P-AUPRO PL [35]

MC8 (ours) 0.974 0.915 0.566 0.473
MC4 (ours) 0.955 0.921 0.572 0.481
MC2 (ours) 0.908 0.935 0.602 0.515
Patchcore[33] 0.821 0.933 0.589 0.478
CDO[6] 0.82 0.932 0.62 0.433
Rev. Distillation[11] 0.739 0.932 0.557 0.372
PFM[38] 0.78 0.931 0.574 0.423
PEFM[39] 0.805 0.93 0.596 0.431
MSFlow[9] 0.777 0.898 0.467 0.323
FastFlow[42] 0.786 0.878 0.498 0.289
EfficientAD[2] 0.764 0.868 0.429 0.311
SimpleNet[25] 0.752 0.863 0.413 0.354
FF+AltUB[20, 42] 0.742 0.821 0.442 0.225
CFlow[16] 0.664 0.78 0.387 0.115
CFA[23] 0.66 0.764 0.392 0.248
AST[34] 0.608 0.713 0.348 0.244
MemSeg[40] 0.789 0.667 0.120 0.203

IDW: Ranked using P-AUC; I-AUC,
AUPRO, and PL[35] also shown.

Table 5: Results on MVTec and IDW datasets.

5 Results

Figure 5: Demonstration of MC predictions
on randomly chosen images from the IDW
dataset. Left to right, input image, prediction,
ground truth.

We run the MC algorithm on MVTec and
the introduced IDW. To compare the re-
sults of MC with existing algorithms, we
aggregate the top 14 anomaly detection al-
gorithms with code available, as selected by
the recent benchmarking work, VisionAD
[35]. These algorithms are shown in Ta-
ble 5. To ensure fair benchmarking, we
use the code from VisionAD for all experi-
ments. In addition, we present the results of
the PL metric, also introduced in the same
work. PL reports the proportion of anoma-
lies which have an IoU agreement between
the prediction and label greater than 0.3. It
is intended to be more interpretable than the
other metrics.

We see that the MC algorithm achieves
state-of-the-art values across I-AUC, P-
AUC, and PL on the MVTec dataset. Sim-
ilarly on the IDW dataset, state-of-the-art
values are achieved across the same metrics. We note that increasing the number of pre-
dictors does not always increase the results. Infact, on the IDW dataset, for P-AUC and PL,
the best values are achieved by MC2. Figure 5 shows some MC2 demonstration predictions
from the IDW dataset.

Notable in the results is the significant increase in I-AUC achieved by the MC variants,
in comparison to the best existing methods. We believe this occurs due to the ensemble
nature of MC. The approach of using multiple predictors reduces the chance of overfitting,
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and therefore increases the likelihood of a correct overall prediction of each image. On
the MVTec dataset, MC4 achieves 0.9994 I-AUC, meaning it almost perfectly separates the
images.

The MC2, MC4, and MC8 takes roughly 20, 40 and 80 minutes to train on a dataset with
1000 train images. The MC2, MC4, and MC8 models have an single image inference time
of 0.036, 0.06, and 0.25 seconds respectively. A 24GB GPU is required to achieve these
values.

6 Conclusion
We introduce a new anomaly detection dataset, Industrial Defects in the Wild (IDW). This
dataset overcomes the shortfalls of previous datasets by providing varied-perspective images
of the real industrial inspections. Previous datasets contain images from the same perspective
taken in controlled conditions, which are not representative of the real world. We present a
novel algorithm, MultiCore (MC). This algorithm trains an ensemble of nearest neighbours
predictors with varying hyperparameters. Through a novel synthetic anomaly schema and su-
pervised learning, we achieve state-of-the-art I-AUC, P-AUC, and PL values on the MVTec
and IDW datasets.

A limitation of the IDW is its specialism to industrial problems. A limitation of MC al-
gorithm is the complexity of training multiple Patchcore+ models, and the memory require-
ment of storing multiple memory banks. A further limitation is the choice of the number of
Patchcore+ models to choose, as different values perform better on different metrics.

Funded by Rolls-Royce Defence; supported by UK Research and Innovation (UKRI),
grant reference number EP/S023437/1.
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