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Abstract

Inverse rendering has been a long-standing problem in computer graphics and vi-
sion, with the objective of decomposing images into intrinsic scene properties including
geometry, illumination, and material. While conventional works mainly focus on object-
level or indoor scenes, addressing the inverse rendering problem for outdoor scenes poses
more challenges, which arise from the complex geometry and time-variant nature of out-
door illumination due to changing sun position and atmosphere condition. In this paper,
we present a novel inverse rendering framework tailored for outdoor scenes characterized
by varying illumination. Specifically, we first disentangle the underlying geometry from
appearance based on the neural radiance fields and incorporate monocular geometric
cues to resolve the complexity of geometry. In addition, we introduce a time-dependent
field to model the time-variant illumination from the sky dome and parameterize the
material properties with the microfacet Bidirectional Reflectance Distribution Function
(BRDF). Finally, we propose a differentiable re-rendering module that integrates all the
decomposed properties to generate new renderings. Experiments demonstrate that our
novel inverse rendering framework yields high-quality reconstruction of scenes’ geom-
etry, material, and illumination, and outperforms previous SOTA methods in the task of
novel view synthesis for outdoor scenes. Moreover, this framework facilitates various
scene editing applications including material editing, object removal, and relighting.

1 Introduction
Inverse rendering is one of the fundamental tasks in the domains of computer graphics
and vision, which aims at reconstructing 3D intrinsic properties from its corresponding 2D
images, and the properties typically encompass geometry [25, 45], materials (e.g., albedo,
roughness) [26, 64], and lighting [39, 40]. In computer graphics, rendering[1, 20] means
generating photo-realistic images from known properties of a scene through rasterization
or ray-tracing, which is a process of projecting from a high-dimensional scene space to a
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Figure 1: (a) Illustration of time-variant illumination of an outdoor scene. (b) Our inverse
rendering framework decomposes intrinsic scene properties including depth, normal, and
albedo. (c) Comparison results with NeRF-OSR[37].

two-dimensional image space. Conversely, inverse rendering involves the intricate process
of elevating the two-dimensional image space to a high-dimensional parameter space, which
is evidently ill-posed and challenging. Nonetheless, addressing this challenge is vital, as
inverse rendering enables the reconstruction of high-fidelity 3D scenes from captured im-
agery. Furthermore, it allows for adding or removing objects and manipulating scene prop-
erties, such as user-specified lighting (relighting) and material editing that benefit a series of
downstream applications including augmented reality and virtual reality.

Based on the target scenarios, inverse rendering problems can be categorized into three
types: single-object scenes[19, 59], indoor scenes[63, 64], and outdoor scenes[37]. The
principal distinctions among them revolve around the diversity of objects and different light-
ing conditions. Obviously, outdoor scenes have more categories and numbers of objects.
Besides, in single-object scenes, the illumination is typically simplified through directional
lighting or a static environmental map, and the lighting of indoor scenes commonly comes
from fixed light sources such as lamps or windows. By contrast, outdoor illumination mainly
comes from the sky dome, where the presence of intricate and dynamic weather conditions
poses challenges for accurate illumination modeling, and the appearance of the scene also
varies with the illumination, as illustrated in Fig. 1 (a). It’s difficult to capture multi-view
images under consistent lighting conditions, as this requires setting up cameras at various
locations simultaneously for image acquisition. Even the exposures of cameras need to be
the same. Therefore, it is necessary to explore how to learn static intrinsic properties like
geometry and material from multi-view images captured under varying illuminations.

Recently, neural radiance fields (NeRFs) [31] have revolutionized the field of image-
based view synthesis, and they represent a 3D scene as a continuous radiance field. Despite
showing promising results in geometry reconstruction [25, 44], object-level decomposition
[19, 59] and indoor scene decomposition [63], the problem of reconstructing intrinsic prop-
erties of dynamic outdoor scenes with NeRF remains largely unexplored. Therefore, we
apply them to the outdoor scene. Specifically, we introduce a NeRF-based framework that
parses geometry, material, and lighting and rerenders novel views for outdoor scenes with
variant illumination from a set of posed images.

With the goal of modeling the intrinsic properties of outdoor scenes, we utilize NeRF as
the representation of the scene’s appearance and employ the signal distance function (SDF)
[35] as the geometric representation, and the SDF values can be integrated into NeRF’s
volume rendering formulation. We resolve the inherent ambiguity in the decomposition of
appearance and geometry by introducing geometric cues as supervision. In addition, we
parameterize the material of the scene with a microfacet bidirectional reflectance distribu-
tion function (BRDF) and estimate albedo and roughness with an additional branch based
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on NeRF’s formulation. To account for scene illumination, we consider a HDR environment
map as the lighting representation for outdoor scenes and propose a time-dependent illumi-
nation field that takes the timestamp and view direction as input, enabling the estimation of
varying illumination caused by dynamic weather. The above modules result in a decompo-
sition of the scene into material, geometry, and lighting. Subsequently, the re-rendering of
the scene’s appearance becomes feasible by employing surface rendering algorithms based
on differentiable Monte Carlo ray tracing techniques. Experiment results demonstrate that
our framework not only achieves high-quality reconstruction and inverse graphics of outdoor
scenes but also facilitates scene editing applications such as relighting and material editing.

2 Related Works
Novel view synthesis involves generating images of unseen viewpoints based on a set of
input views. With the advent of deep learning, many learning-based methods [11, 12, 21,
28, 30, 62] emerge and synthesize photorealistic renderings through differentiable rendering
pipelines. Recently, NeRF [31] has made significant strides in view synthesis, many works
have been dedicated to enhancing its quality and efficiency in novel view synthesis. For
instance, some works[8, 49, 54] focus on reducing the number of training views for NeRF,
while others aim to achieve anti-aliasing in the rendered images [2, 3, 27]. Besides, a se-
quence of studies has been undertaken to enhance the representation capabilities of NeRF
through the utilization of grid-based architectures [13, 32, 56] and point-based approaches
[41, 51]. Furthermore, some works [25, 33, 44, 53] integrate NeRF’s volume rendering
pipeline with implicit surface representation and achieve both surface reconstruction and
volume rendering using a single model. We extend NeRF to outdoor scenes[34, 48] under
time-variant lighting and propose a NeRF-based pipeline to learn intrinsic scene properties.

Lighting estimation. In the pioneering work [6], a mirrored sphere is employed as a
physical probe to measure the radiance of the surrounding environment. Subsequent studies
[7, 36, 47] explore the use of other known objects as light probes. With the development of
deep learning, many works learn generalizable models directly from images in a data-driven
fashion. For example, [40, 43, 57] estimate the environment lighting from RGB images
using end-to-end neural networks. Besides, [39, 61] estimate an HDR environment map
and show applications like object insertion. Specific to outdoor illumination, some works
[16, 58] apply analytical sky models like Hošek-Wilkie model[17] or the Lalonde-Matthews
model[23] to represent the lighting from sky dome. However, these analytical models fail
to capture the various illumination conditions for outdoor scenes and ignore the time-variant
nature. In this work, we adopt an HDR environment map as the illumination representation
and use a time-dependent field to cope with complex and changing outdoor lighting.

Inverse rendering is a long-term goal in computer vision, involving many intrinsic prop-
erties to be decomposed, including geometry [18, 50], illumination [14, 40], and materials
[9, 29]. Some learning-based approaches [5, 38, 55, 64] employ dense prediction networks to
estimate these properties in a data-driven way. These methods typically leverage large-scale
datasets[26] for training, however, relying on the ground truth of albedo and geometry poses
challenges due to difficulty in acquisition. Additionally, these approaches are typically de-
signed for single-image inputs, making them lack multi-view consistency. The emergence of
NeRF [31] has influenced many recent works, such as [4, 19, 46, 59, 60, 63], adopting NeRF
as the foundation to address inverse rendering problem. These works are usually limited
to single objects[59] or indoor scenes[63] or do not consider the variant appearance of out-
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door scenes[52]. [37, 46] addresses varying illumination with per-image learnable lighting
parameters, yet their representation of intrinsic properties lacks physical modeling, result-
ing in inaccurate estimates. To this end, we propose a physically-based inverse rendering
framework based on NeRF to resolve the time-variant illumination of outdoor scenes.

3 Method

Our goal is to decompose the intrinsic properties of outdoor scenes from a set of posed im-
ages, accounting for their temporal variation due to illumination changes. Our inverse ren-
dering framework is composed of two stages: the first one is to disentangle the underlying
geometry from appearance based on NeRF while the second is to optimize the illumination
model and material parameters, and a re-rendered image can be generated with the differen-
tiable rendering pipeline. The overall framework is depicted in Fig. 2.

3.1 Geometry Reconstruction

To disentangle the underlying geometry from the scene appearance, we represent the scene
geometry as a neural implicit surface and combine it with volume rendering following previ-
ous arts [25, 44, 45]. Specifically, we model the geometry using the signed distance function
(SDF) denoted as s(x), which is a continuous function that describes the distance to the
nearest surface given a 3D coordinate x. Following [32], we parameterize the SDF using a
grid-based neural network fs built on multi-resolution hash encoding:

s(x),z(x) = fs(h(x)), (1)

in which h(·) is the multi-resolution hash encoding and z(x) is the geometric feature
of point x. While the geometry is constant under lighting variation, the scene’s appearance
usually changes with the illumination. To model the variant appearance, we employ a NeRF-
based approach, parameterized by a neural network fθ . In light of the time-variant nature of
appearance, we enhance the vanilla NeRF by introducing a timestamp denoted as τ as an
additional input. More specifically, given a 3D coordinate x and a viewing direction d at a
particular timestamp τi, we represent the scene appearance as follows:

c = fθ (z(x),d,e(τi)). (2)
c is the RGB color value, and e is a Fourier embeder to encode timestamps into high-
frequency signals. Let r(t) = o + td denote a camera ray, the color C(r) is computed as:

C(r) =
N

∑
i=1

Ti
rα

i
rc

i
r, Ti

r =
i−1

∏
j=1

(1−α
j
r), α

i
r = 1− exp(−σ

i
r δ

i
r ), (3)

where σ is the volume density, Ti
r and α

j
r denote the transmittance and alpha value of sam-

ple point i along ray r respectively, δ i
r is the distance between neighboring sample points. To

make the implicit surface representation compatible with NeRF’s volume rendering formu-
lation, we transform the SDF value s into the density value σ following VolSDF [53]. Then
the geometric properties including normal N(r) and depth D(r) can also be obtained as:

D(r) =
N

∑
i=1

Ti
rα

i
r t

i
r, N(r) =

N

∑
i=1

Ti
rα

i
rn

i
r, (4)

the 3D unit normal n is the normalized analytical gradient of the SDF function s. The objec-
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Figure 2: Overall architecture. Our inverse rendering framework is composed of two
stages: the first one is to disentangle the underlying geometry from appearance based on
NeRF while the second is to optimize the illumination model and material parameters, a
re-rendered image can be generated with the differentiable rendering pipeline.

tive of the training procedure is defined as:

LRGB =
1
|R| ∑

r∈R
∥C(r)− Ĉ(r)∥2

2, Leikonal =
1
|X| ∑

x∈X
(||∇S(x)||−1)2, (5)

where R denotes a set of rays, and Ĉ(r) is the ground-truth RGB value. Leikonal is an eikonal
loss to regularize SDF values, where X is the set of 3D points sampled near the surface.

Monocular geometric cues. Disentangling the scene’s appearance and underlying ge-
ometry from images is an ill-posed problem. Consequently, the incorporation of an addi-
tional geometric constraint becomes pivotal in resolving the inherent ambiguity. In our ap-
proach, we leverage large vision models to furnish us with geometric priors. While monoc-
ular geometric cues from pre-trained models may not be not accurate, they can still serve
as a geometric constraint for the reconstruction. In detail, we employ Omnidata[10], a pre-
trained model based on the Transformer architecture, to preprocess the multi-view training
images and obtain the normal map denoted as N̂. This normal map serves as a supervision
to guide the reconstruction of geometry, which is formulated as:

Lnormal =
1
|R| ∑

r∈R
∥N(r)− N̂(r)∥2

2. (6)

3.2 Illumination Modeling

In order to facilitate scene editing applications like relighting, it is important to have an
editable light source representation that can accommodate various lighting conditions and
support realistic rendering of complex scenes. For outdoor scenes, illumination primarily
originates from the sky. Hence, we employ High Dynamic Range (HDR) environment maps
as the illumination representation for the sky dome. Following the definition of spherical
environment mapping, the radiance of the emergent ray r(t)=o+td only depends on its di-
rection d, which can be formulated as a neural illumination field. Furthermore, given the
time-variant nature of outdoor illumination, we extend the representation of illumination to
a time-dependent field, which is defined as:

E(r,τi) = fe(d,e(τi)), (7)
where E is the corresponding HDR value, given a ray r pointing directly to the sky without
being occluded by the foreground of the scene. This allows us to use a set of images captured
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at various times and under different lighting conditions for training. Moreover, relighting
becomes a straightforward process by simply adjusting the timestamp of the corresponding
illumination. Besides, it is essential to model the spatial distribution of light sources, which
means we need to distinguish between the foreground and the sky. To achieve this, we
incorporate a pre-trained semantic segmentation model [24] to derive a mask for the sky,
denoted as M̂e. To acquire the corresponding sky mask at any view, we leverage the NeRF’s
density to render the foreground probability Mf for a given ray r:

Mf(r) =
N

∑
i=1

Ti
rα

i
rσ

i
r , Me(r) = 1−Mf(r). (8)

Me shows the probability that r directly points to the sky. Then a cross-entropy loss is
introduced as:

Lseg =
1
|R| ∑

r∈R

[
M̂elogMe +(1− M̂e)log(1−Me))

]
. (9)

3.3 Material Estimation
We employ the GGX microfacet BRDF [15] for the representation of spatial-varying mate-
rials. The microfacet model serves as a physically-based surface illumination model, facil-
itating high-fidelity and photorealistic rendering results. In the specific formulation of the
BRDF denoted as fr(d,ω,n,kd,ks,ρ), the variables are as follows: d, ω , and n represent
geometric properties including the emergent ray’s direction, incident ray’s direction, and the
surface point’s normal, while kd, ks, and ρ denote material parameters describing diffuse
albedo, specular albedo, and surface roughness respectively.

Given that the material parameters exhibit certain spatial distributions, it is natural to
employ a neural field to estimate them. Since the materials are independent of view direction
and timestamp, the neural material field can be conditioned solely on geometric features as:

kd(x),ks(x) = fm(z(x)), ρ(x) = fρ(z(x)). (10)
kd(x), ks(x) and ρ(x) are the corresponding material prediction given a coordinate x. Con-
sequently, the material estimation for a given ray is expressed as follows:

kd(r) =
N

∑
i=1

Ti
rα

i
rkd

i
r, ks(r) =

N

∑
i=1

Ti
rα

i
rks

i
r, (11)

ρ(r) can be calculated in the same way. The material of the scene surface is relatively
smooth, we use a smoothness loss to supervise the material parameters:

Lmat =
1
|X| ∑

x∈X
[∥kd(x)−kd(x′)∥2 +∥ks(x)−ks(x′)∥2 +∥ρ(x)−ρ(x′)∥2]. (12)

where X is the set of sampled points near the surface, x′ = x+ ε and ε is a small random
uniform 3D perturbation. Moreover, a regularization loss is introduced according to energy
conservation law that the sum of diffuse and specular albedo should not exceed 1:

Lreg =
1
|X| ∑

x∈X
ReLU(kd(x)+ks(x)−1). (13)

3.4 Rerender with Intrinsic Properties
Building upon the decomposed intrinsic properties encompassing geometry, material, and
illumination, our objective is to integrate them into the scene’s appearance and regenerate a
photorealistic image. This process empowers various image editing applications, such as re-
lighting and material editing. Leveraging the previously estimated BRDF, we can efficiently
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Figure 3: Illustration of outdoor illumination model.

re-render the image using a surface rendering algorithm. For every pixel in the image, the
emergent ray r(t) = o + td through the pixel can be computed with camera parameters. For
rays not intersecting with scene surfaces, the rerendered color C′(r) equals the sky illumina-
tion E(r), τ is omitted for simplicity. For the rays intersecting with the surface, the outgoing
radiance at the intersection point is given by the rendering equation which is grounded in the
principle of energy conservation:

C′(r) = Lo(p,d) =
∫

Ω+
fr(d,ω,n,kd,ks,ρ)Li(p,ω)cosθdω (14)

where p is the intersection point, Ω+ is the positive hemisphere determined by the surface
normal n at point p, ω represents all possible incident ray directions in Ω+, Li is the incident
radiance from direction ω on point p, and θ is the angle between d and ω .

As illustrated in Fig. 3, the incident illumination Li of outdoor scenes can be divided
into two types: direct illumination and indirect illumination. The former is the lights coming
directly from the sky dome while the latter is lights reflected by the scene surfaces. Given
the incident ray r′(t) = p+ tω , Li can be calculated from the sky illumination and the surface
radiance as:

Li(p,ω) = [1−Me(r′)]C(r′)+Me(r′)E(ω), (15)
where Me(r′) ∈ [0,1] shows the probability that the ray r′(t) = p+ tω is not occluded by the
scene surface, which can be obtained as Eq. 8.

Considering that we need to utilize the re-rendering process to optimize the decomposed
intrinsic properties, the re-rendering should be differentiable. We now describe how we
achieve the differentiable re-rendering based on Eq. 14. Given an emergent ray r(t) =
o + td, we can easily trace the intersection point p with surface based on SDF values as
p = o+(∑N

i=1 Ti
rα

i
r t

i
r)d, and the normal of p can be accessed through Eq. 4. Since the defi-

nite integration in Eq. 14 is intractable, we use Monte Carlo numerical integration to resolve
it. Specifically, given a sampling rate M, we generate M incident rays using importance sam-
pling, and the rays are denoted as r′i(t) = p+ tωi, i = 1...M, then Eq. 14 can be reformulated
through Monte Carlo integration as:

C′(r) =
1
M

M

∑
i=1

fr(d,ωi,n,kd,ks,ρ)Li(p,ωi)cosθi

P(d,ωi)
. (16)

P(d,ωi) is the probability density function dependent on the estimated material parameters
kd,ks,ρ . The optimization objective for re-rendering is defined as:

Lrerender =
1
|R| ∑

r∈R
∥C′(r)− Ĉ(r)∥2

2. (17)

3.5 Training process

Inverse rendering is inherently an ill-posed problem, therefore it’s important to impose con-
straints on the decomposition of intrinsic properties. Given our utilization of monocular
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Input Image Depth Map Normal Map MeshAlbedo

Figure 4: Qualitative results of intrinsic properties on NeRF-OSR dataset.

geometric cues as priors, it is reasonable to reconstruct the scene geometry first and subse-
quently estimate the material based on the results of geometric decomposition. Therefore,
we adopt a two-stage training pipeline. In the first stage, we disentangle the geometry and
appearance, employing the following loss function:

Lstage1 = λRGBLRGB +λnormalLnormal +λeikonalLeikonal +λsegLseg, (18)
in which λ(·) is the corresponding loss weight. In the second stage, we aim to optimize
the material estimation results through the self-supervision of re-rendering, and the network
parameters trained in the first stage are frozen. The total training objective for this stage is:

Lstage2 = λmatLmat +λregLreg +λrerenderLrerender. (19)

4 Experiment
We conduct experiments on the NeRF-OSR dataset [37], a benchmark of several outdoor
sites. Each site within the dataset has been extensively photographed from multiple view-
points and at various times. Specifically, these sites have been captured under diverse
weather conditions, resulting in a total of 3,240 viewpoints captured across 110 different
recording sessions. The illuminations encompass a range of weather conditions, including
both sunny and cloudy days. We choose three representative sites and train a separate model
for each of them. Each site is trained with images under different illuminations to account for
the variations in lighting conditions. We employ the standard image quality metrics PSNR
and SSIM for quantitative evaluations.

4.1 Comparison with SOTA methods

Novel view synthesis .Considering the impact of lighting on the appearance of the scene,
we validate the performance of novel view synthesis on an illumination-invariant outdoor
dataset, Tanks and Temples (TnT) [22]. Specifically, we use 100 frames from the Barn scene
for experiments, with 90 images for training and 10 images for testing. The estimation of
camera poses and training for baselines are implemented using Nerfstudio [42]. The quan-
titative results in Tab. 1 demonstrate that our method achieves better performance on view
synthesis when compared to the baseline methods, which can be credited to the utilization
of monocular normal cues, offering a valuable geometric prior for complex outdoor scenes.

Geometry reconstruction. Given that the dataset lacks ground truth of intrinsic proper-
ties, we present qualitative results for geometry reconstruction with our prediction of depth
and normal maps. As depicted in Fig. 4, we can accurately estimate the normal map of the
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Figure 5: The material optimization pro-
cess on NeRF-OSR dataset.
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Figure 6: Qualitative comparison for novel
view synthesis on TnT dataset with or with-
out Lnormal.

Method PSNR↑ SSIM↑

Nerfacto [42] 16.722 0.647
InstantNGP [32] 19.735 0.770

Ours (w/o Lnormal) 19.218 0.732
Ours 20.031 0.775

Table 1: Quantitative results for novel
view synthesis on TnT dataset.

Method PSNR↑ SSIM↑

End-to-end 14.533 0.412
Two-stage 20.438 0.623

Time-invariant 23.201 0.724
Time-variant 24.435 0.734

Table 2: Ablation study on the training
process and the time-variant illumination.

scene, which is credited to the monocular geometric cues. Additionally, despite the absence
of depth supervision, we can successfully estimate reasonable depth values, demonstrating
that we have a comprehensive understanding of geometry. Moreover, we also generate ex-
plicit meshes of the scenes through marching cubes based on the SDF values. These meshes
exhibit sufficient geometric details to serve as 3D assets in downstream applications.

Material and illumination estimation. As shown in Fig. 4, we achieve reasonable
material estimation for various scenes. We further present the optimization results during the
second stage in Fig. 5. As depicted in the figures, with an increasing number of optimization
iterations, the albedo and roughness map gradually converge to reasonable estimates, for
example, the texture on the ground and letters on the signboard. Simultaneously, the re-
rendered images and corresponding illuminations progressively become photorealistic and
increasingly resemble the ground truth image. These results verify the effectiveness of our
method in successfully estimating the material and illumination for outdoor scenes.

4.2 Ablation Studies

Monocular geometric cues. To assess the effectiveness of normal supervision, we con-
ducted an ablation study of Lnormal on the TnT dataset, and the results are shown in Tab. 1.
Introducing Lnormal leads to a notable increase in performance, as the supervision serves as
a geometric prior to resolving the inherent ambiguity for disentanglement of geometry and
appearance. Furthermore, Fig. 6 offers qualitative comparisons that highlight the impact of
utilizing geometric cues. With normal supervision, our model learns a superior geometric
representation and excels in synthesizing the scene’s appearance with more details.

Two-stage training. We explore the impact of two-stage training, and the results are
presented in Tab. 2. End-to-end training indicates that the entire network is trained simulta-
neously with the objective function defined as Lend2end = Lstage1 +Lstage2. It’s observed that
both PSNR and SSIM exhibit a significant decrease compared to two-stage training. Because
all the variables need to be optimized simultaneously, and the material parameters lack con-
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Figure 7: Comparison for time-variant
model on NeRF-OSR dataset.

Material Editing Object Removal Relighting

Figure 8: Results for scene editing.

Method PSNR↑ SSIM↑

NeRF-OSR [37] 16.474 0.478
Ours 17.091 0.497

Table 3: Quantitative results for relighting on NeRF-OSR dataset.

straints, making the optimization highly ill-posed. In contrast, in the two-stage training, the
optimization for material and illumination is conditioned on the frozen results of geometric
reconstruction, which provides a more stable and convergent optimization process.

Time-variant illumination. We remove the timestamp input from both the NeRF and
the illumination model. Tab. 2 presents the quantitative results for appearance rendering,
highlighting the benefits of incorporating a time-variant input for learning dynamic appear-
ance. As depicted in Fig. 7, the absence of the timestamp input results in the model’s
inability to accurately capture the changes in appearance caused by dynamic illumination.
Moreover, it fails to learn the variant illumination, which leads to the learned albedo being
blurred and covered by some unreasonable shading. This underscores the crucial role of our
time-variant illumination model in representing the dynamic nature of outdoor lighting.

4.3 Scene Editing Applications
We conduct experiments on a set of scene-editing tasks, and the qualitative results are shown
in Fig. 8. The first row is the inputs while the second row is the edited results. It’s worth
noting that all the renderings are synthesized using our differentiable renderer rather than
rendering engines. For relighting, we relight the scene with an unseen environment map,
which is implemented by mapping the illumination value of a ray to the RGB value of the
environment map. Tab. 3 provide results for relighting a typical site with an environment
map, and our framework achieves superior performance compared to NeRF-OSR.

5 Conclusion
In this work, we introduce a novel inverse rendering framework that targets reconstructing
outdoor scenes under varying illumination. We disentangle geometry from appearance based
on NeRF and introduce monocular geometric cues for geometric prior. Besides, we model
the illumination with a time-dependent field and parameterize the material properties with
the microfacet BRDF. A differentiable re-rendering pipeline is proposed to generate new
renderings from the intrinsic properties. We evaluate the effectiveness of our framework
on an outdoor dataset and demonstrate that it outperforms existing methods on novel view
synthesis. Additionally, we provide qualitative results on a set of image editing tasks, which
can serve as a hint for potential AR/VR applications.
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