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Abstract

Recent advances in deep learning have significantly improved the accuracy of medi-
cal image segmentation, yet the need for extensive annotations remains a challenge due
to the high costs associated with practical implementation. In this study, we introduce
Boundary Contrastive Learning for Label-Efficient (BCLL), a novel label-efficient learn-
ing method. The primary innovation of BCLL is the extension of contrastive loss concept
used in conventional label-efficient learning methods like CLLE. We propose Boundary
Contrastive Learning (BCL), which applies average pooling filters to annotated images
to capture positional information about the boundary and internal regions of classes. By
using features extracted from these regions, BCL computes various combinations of con-
trastive losses in a single image. Not only does this method bring features of the same
class closer and push those of different classes apart, but it also designs contrastive losses
to draw boundary region features closer to those of internal regions. This approach sig-
nificantly enhances the accuracy of segmenting challenging boundary parts using only a
small set of labeled data. Additionally, we have incorporated a new similarity function
based on the Generalized Gaussian Distribution (GGD), named GGD-vMF, for the simi-
larity calculations. This new similarity loss function enables enhanced learning with only
minimal supervised data. Our experiments on Automatic Cardiac Diagnosis Challenge
(ACDC), Synapse multi-organ segmentation (SMO), and Covid19 datasets demonstrated
that BCLL achieves superior accuracy compared to the baseline and other label-efficient
medical image segmentation methods. Specifically, BCLL showed an improvement in
mIoU of 7.17% with 5% labels on ACDC, 7.74% with 5% labels on SMO, and 0.44%
with 10% labels on Covid19 in comparison with baseline U-Net.

1 Introduction
Medical image segmentation using deep learning has achieved high precision in recent years
and is increasingly applied in the real world, such as in diagnostics using CT and MRI scans.
However, training these models still requires a substantial amount of images and annota-
tions. The necessity for extensive training data in medical imaging represents a significant
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drawback, as data collection is often limited by privacy concerns. Moreover, the human and
financial costs of creating annotations hinder further real-world application of medical im-
age segmentation. Recently, label-efficient learning methods [7], which train models from a
limited number of annotations, have gained attention. CLLE [11] utilizes contrastive learn-
ing to train models by attracting features that belong to the same class and repelling features
from different classes, using only a limited number of labeled images. The discrimination
of feature classes is facilitated using the information from corresponding annotations. Nev-
ertheless, CLLE faces challenges. Firstly, feature sampling for contrastive learning can be
biased due to class imbalance, reducing segmentation accuracy, especially for small objects
within images. Secondly, although contrastive learning generally requires extensive data,
CLLE’s reliance on limited labeled data can decrease the discriminative accuracy around
complex object boundaries.

In this paper, we propose a novel learning method, Boundary Contrastive Learning for
Label-Efficient (BCLL), which effectively learns from a limited number of labeled images.
This method addresses two key challenges. First, to tackle the issue of poor segmentation
accuracy for small objects due to class imbalance, BCLL creates a feature head for each
class and performs equitable sampling from features specialized to each class. These fea-
tures are then processed using the subsequent Boundary Contrastive Learning (BCL). Sec-
ond, to improve the segmentation accuracy around object boundaries, we propose BCL, a
new approach to contrastive learning. BCL applies an average pooling filter to annotated
images to capture positional information of class boundary and interior regions. By using
features extracted from these regions, BCL computes various combinations of contrastive
losses within a single image. The design of these contrastive losses not only attracts features
of the same class and repels those from different classes, as in CLLE, but also aims to bring
features from boundary regions closer to those from interior regions. This is beneficial as the
accuracy tends to be higher in interior regions than in boundary areas. This approach sig-
nificantly enhances the segmentation of boundary areas by using only a limited number of
labeled images. Furthermore, by incorporating GGD-vMF, a new similarity function based
on the generalized Gaussian distribution, into the similarity calculations of BCL, we can fa-
cilitate more effective learning than with the normal cosine similarity or t-vMF [4] used in
conventional contrastive learning.

In experiments, we demonstrate that our proposed method, BCLL, achieves superior ac-
curacy compared to baseline U-Net and other label-efficient medical image segmentation
methods on three datasets: Automatic Cardiac Diagnosis Challenge (ACDC) [1], Synapse
multi-organ segmentation (SMO) [5], and Covid19 [10] datasets. Specifically, BCLL out-
performed U-Net by 7.17% on the ACDC dataset with only 5% labeled data, 7.74% on the
Synapse multi-organ segmentation with only 5% labeled data, and 0.44% on the Covid19
dataset with only 10% labeled data.

Our primary contributions are as follows:

1. We tackle the issue of poor segmentation accuracy for small objects due to class im-
balance, BCLL creates a feature head for each class and performs equitable sampling
from features specialized to each class.

2. We propose a new contrastive learning method, BCL, which calculates diverse combi-
nations of cosine similarity losses within a single image. BCL aims to bring features
from boundary regions closer to those from interior regions. This approach signif-
icantly enhances the segmentation performance of boundary areas by using only a
limited number of labeled images.
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3. The new similarity function, GGD-vMF, improves learning effectiveness relative to
conventional cosine similarity and t-vMF metrics.

4. We demonstrate that BCLL achieves the highest accuracy compared to baseline U-Net
and other label-efficient methods on the ACDC, SMO, and Covid19 datasets.

This paper is organized as follows. Section 2 discusses related works on label-efficient
methods and cosine similarity. Section 3.1 details our BCLL method. Section 4 describes
experimental setup and results on three datasets. Finally, Section concludes our paper.

2 Related Works

2.1 Label-efficient learning

In recent years, the field of label-efficient learning, which focuses on training models with
limited labeled data, has gained prominence. This area is closely related to few-shot learning,
but differs primarily in the classification methods used. While few-shot learning compares
features of template and target data to classify similar items into the same group, label-
efficient learning employs standard classification techniques and typically utilizes more data
than few-shot learning. Label-efficient methods encompass various strategies, including
techniques for only minimal labeled data training [11], specialized methods for medical
imaging [9, 12], and adaptations for point clouds [2, 8]. For instance, CLLE, foundational
to this study, uses a small number of labeled images for contrastive learning. Specifically, it
employs contrastive loss to draw features within the same class closer and separate features
from different classes. Class feature discrimination is enabled through the use of informa-
tion from corresponding annotations. Similarly with CLLE, many label-efficient approaches
leverage contrastive learning frameworks, and this paper follows precedent in proposing an
advanced label-efficient method using a contrastive learning framework.

2.2 Cosine similarity

In machine learning, cosine similarity is commonly used to measure the similarity between
vectors, but it often suffers from slow learning rates. Kobayashi [4] proposed an enhanced
similarity measure based on the von Mises-Fisher distribution, termed t-vMF similarity. The
vMF similarity function φ is defined as follows.

φ(x;κ) = 2
ψ(x;κ)−minψ(x;κ)

maxψ(x;κ)−minψ(x;κ)
−1 (1)

where x represents the cosine similarity, κ is a hyperparameter, and ψ(x;κ) is a profile
function based on the probability density function. As shown in Figure 3, by narrowing the
’peak’ and widening the ’base’ of the similarity function, t-vMF compute higher similarity
for closer features and lower similarity for more distant features. In this paper, we define a
new profile function based on the generalized Gaussian distribution instead of the student’s
t-function, proposing a similarity function with an even narrower peak and a wider base
compared to t-vMF.
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Figure 1: Overview of BCL. For segmentation, the U-Net model is employed. The term
LCE represents the cross-entropy loss, while LBCL denotes the proposed BCL’s loss. f is the
output from the feature head, y is the label, and ŷ indicates the output from the class head.

3 Proposed Method

We propose a new learning method, BCLL, which effectively learns from a small number
of labeled images. BCLL addresses the first issue mentioned in Section 1, namely the poor
segmentation accuracy for small objects due to class imbalance, by creating a feature extrac-
tor for each class and equally sampling class-specific features for subsequent BCL. For the
second issue highlighted in Section 1—the low segmentation accuracy around object bound-
aries—BCL is introduced. This new contrastive learning approach extends the contrastive
loss concept used in conventional label-efficient methods like CLLE, which brings together
features within the same class and separates those between different classes. BCL utilizes
average pooling filters on annotated images to gather positional data regarding class bound-
aries and internal areas. By leveraging features extracted from these regions, BCL calculates
diverse contrastive losses within the same image. This technique not only pulls features of
identical classes nearer while distancing those from distinct classes but also configures the
contrastive losses to align features of boundary regions more closely with those of internal
areas. Such an approach greatly improves the segmentation accuracy of challenging bound-
ary parts with merely a limited collection of labeled data. Moreover, by incorporating a new
profile function based on the generalized Gaussian distribution (GGD), called GGD-vMF,
BCL advances beyond conventional contrastive learning metrics like cosine similarity and
t-vMF, facilitating more effective learning.

3.1 Feature Head

Figure 1 illustrates the architecture of our proposed BCLL. The segmentation model utilizes
U-Net [6], with class heads performing segmentation and feature heads outputting features
for contrastive learning. The number of feature heads corresponds to the number of classes
C. By equally sampling the class-specific features f = { f c}C

c=1 from each feature head and
applying BCL, we address the issue of poor segmentation accuracy for small objects due to
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class imbalance. The loss function for training the final model is defined as follows.

L(ŷ,y, f ) = LCE(ŷ,y)+LBCL( f ,y) (2)

where LCE represents cross-entropy loss, and LBCL is the proposed contrastive loss. y ∈
0,1C×H×W denotes labels, and ŷ ∈ [0,1]C×H×W represents the outputs from the class heads.

3.2 Boundary Contrastive Learning

Figure 2: Method for obtaining the boundary of object.

Contrastive Loss. The process for obtaining boundary areas is shown in Figure 2. Av-
erage pooling with filter size 2r+1 is applied to the annotation Y c for class c. Areas where
values change are defined as the boundary Rc

edge, and those without changes are defined as
Rc

in. The r is a hyperparameter. By using the positional information from these labels, BCL
identifies whether the features are associated with object boundaries or internal regions.

Sc
edge(h,w) =

{
1

C|Rc
edge|

{h,w} ∈ Rc
edge,

0 {h,w} /∈ Rc
edge.

(3)

Sc
in(h,w) =

{
1

C|Rc
in|

{h,w} ∈ Rc
in,

0 {h,w} /∈ Rc
in.

(4)

where h,w represents pixel positions, and Sc
edge and Sc

in are the probability densities for the
boundary and interior regions respectively.

In our study, we define a novel contrastive loss function, LBCL( f ,y), for improving seg-
mentation accuracy, particularly around object boundaries, by leveraging a limited amount
of labeled data. The function is structured as follows.

LBCL( f ,y) =
1
C

C

∑
c=1

Ledge-in( f c,yc)+Lin-in( f c,yc) (5)

Ledge-in( f c,yc) =
1

N2

N

∑
{h,w}
∼Sc

edge

N

∑
{i, j}
∼Sc

in

(φGGD( f c
h,w · f c

i, j;κ)−1[yc
h,w,y

c
i, j])

2 (6)

Lin-in( f c,yc) =
1

N2

N

∑
{h,w}
∼Sc

in

N

∑
{i, j}
∼Sc

in

(φGGD( f c
h,w · f c

i, j;κ)−1[yc
h,w,y

c
i, j])

2 (7)
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where N is the number of samples, y represents labels, and φGGD is the similarity function
based on the generalized Gaussian distribution. The feature vectors f c

hw and f c
i, j correspond

to the features at pixel positions {h,w} and {i, j} within class c, respectively. The indicator
function 1 is defined as

1[yc
h,w,y

c
i, j] =

{
1 if yc

h,w = 1 and yc
i, j = 1,

−1 otherwise.
(8)

Function Ledge-in aims to bring the features from boundary regions closer to those from in-
ternal region in same class, enhancing feature consistency across these zones. Conversely,
Lin-in acts to reduce the variance among features within the internal regions, preventing the
pull of accurately classified interior features towards the boundary features. This contrastive
loss mechanism calculates multiple similarity losses from an image, efficiently improving
segmentation accuracy by aligning boundary features more closely with internal features.

GGD-vMF. In BCL, we propose GGD-vMF to enhance the effectiveness of similarity calcu-
lations, which are commonly used in conventional contrastive learning. Unlike conventional
methods such as t-vMF, our GGD-vMF significantly improves learning efficiency by refin-
ing the similarity function’s profile. As illustrated in Figure 3, the GGD-vMF similarity
function achieves a narrower ’peak’ and a broader ’base,’ resulting in higher similarity val-
ues for proximal features and lower similarity for those that are more distant. Furthermore,
by narrowing the ’peak’ of the similarity function, the ’slope’ of the mountain becomes
steeper, which facilitates rapid learning progression due to higher gradients achieved when
data points have high similarity. The wider ’base’ helps prevent gradient vanishing as gradi-
ents approach zero. While t-vMF exhibits similar effects, as demonstrated in the experiments
presented in Section 4.2, our proposed GGD-vMF achieves superior performance.

The similarity function φGGD is defined as

ψGGD(x;κ) = exp(−(2−2x)
1

2κ ) (9)

φGGD(x;κ) = 2
ψGGD(x;κ)− exp(−2

1
κ )

1− exp(−2
1
κ )

−1 (10)

Figure 3: Overview of GGD-vMF. The vertical axis represents the output value of similarity
function, while the horizontal axis represents the angle between vectors. The black, blue,
and green lines indicate cos similarity, t-vMF, and GGD-vMF, respectively.
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4 Experiments

4.1 Setting
Datasets. In our experiments, we utilized three datasets: Automatic Cardiac Diagnosis Chal-
lenge (ACDC) [1], Synapse multi-organ segmentation (SMO) [5], and Covid19 [10]. ACDC
dataset comprises cardiac MRI images categorized into four classes: background, RV cavity,
myocardium, and LV cavity. For training, validation, and testing, we use 690, 95, and 190
images respectively, treating these 3D MRI images as 2D data. This dataset is prone to seg-
mentation errors at object boundaries due to the presence of thin objects. SMO dataset con-
tains CT images of the lower abdomen, comprising 13 classes. It is a large dataset with 2474
training, 613 validation, and 692 testing images, notable for its significant class imbalance.
Covid19 dataset includes CT images of the lungs, divided into four classes: background,
lungs other, ground glass, and consolidations. We use 70, 10, and 20 images for training,
validation, and testing, respectively. This dataset includes small objects, such as the consol-
idations class.
Training and evaluation details. We employed U-Net [6] as the baseline. Adam and Co-
sine Annealing are used for training 3000 epochs. The hyperparameters were set as follows:
pooling size r = 3, sampling number N = 512, and κ = 0.5 in equation 10. We measured
the validation accuracy for κ at intervals of 0.5 within the range of 0.5 to 5.0, and selected
the value that yielded the best validation accuracy. To assess the efficiency of learning with
limited labeled data, we trained using only 5%, 10%, 30%, and 50% of the training datasets,
prioritizing images containing a wide range of classes. The evaluation metric was mean
Intersection over Union (mIoU), with results averaged over five trials using five-hold cross
validation.

4.2 Results

Table 1: Experimental results on three datasets. We show mIoU results from five-hold cross
validation. The baseline is U-Net with cross-entropy loss. Due to extremely limited training
data available for Covid19, evaluations with only 5% of the data are not conducted.

dataset method 5% 10% 30% 50% 100%
ACDC baseline 64.97% 77.08% 81.17% 84.00% 86.96%

CPC 66.45% 75.04% 80.97% 84.11%
CLLE 68.64% 77.22% 81.49% 84.59%
ours 72.14% 77.30% 82.10% 85.89%

SMO baseline 39.33% 41.43% 53.74% 61.82% 66.19%
CPC 40.14% 40.97% 56.36% 63.06%

CLLE 39.59% 40.93% 56.63% 62.25%
ours 47.07% 52.28% 60.87% 68.09%

Covid19 baseline - 39.39% 43.89% 46.16% 45.65%
CPC - 38.52% 43.14% 46.27%

CLLE - 34.65% 41.15% 45.27%
ours - 39.83% 47.07% 47.12%

Table 1 shows mIoU on three datasets, while Figure 4 illustrates their segmentation re-
sults. In ACDC which contains many thin objects and is prone to boundary identification
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errors, our method outperformed the baseline, and existing label-efficient methods CPC [3]
and CLLE by 7.17%, 5.69%, and 3.50% respectively with 5% of the dataset. This demon-
strates the effectiveness of our approach, particularly in accurately segmenting near object
boundaries, as clearly visible in Figure 4 for ACDC. Our method also shows superior per-
formance with 50% of the ACDC dataset.

For SMO dataset, which exhibits significant class imbalance, our method surpasses the
baseline, CPC, and CLLE by 7.74%, 6.93%, and 7.48% with 5% of the dataset, effectively
addressing class imbalance. With 50% of SMO, our method continues to perform exception-
ally well, outperforming others by 6.27%, 5.03%, and 5.84% respectively. The segmentation
results for SMO in Figure 4 also indicate the superior segmentation capability of our method.

Next, we discuss the results of Covid19 dataset. Due to the extremely limited number
of images, models were trained using either 10% or 50% of the training data. For training
dataset in Covid19 comprising 70 images, only 10% training means just 7 images. In this
subset containing small objects, when our method is compared to the baseline and existing
label-efficient methods such as CPC and CLLE, our proposed method showed improvements
of 0.44%, 1.31%, and 5.18%, respectively. The existing label-efficient methods were outper-
formed by U-Net, indicating their ineffectiveness with severely limited data as in this trial.
For such a small dataset, few-shot learning methods would be deemed optimal. However, our
proposed method utilizing BCL to compute multiple contrastive loss from a single image,
surpasses the performance of U-Net even with minimal training data. In the 50% Covid19
dataset, while CPC exceeds U-Net’s accuracy, CLLE remains below it. Our method consis-
tently outperforms the baseline and the methods CPC and CLLE, proving to be effective even
in datasets containing small objects like the Covid19 dataset. The superior segmentation ca-
pabilities of our method are clearly evident in Figure 4 for Covid19. In summary, across all
trials on three datasets, our method consistently achieved the highest accuracy in compari-
son with the baseline U-Net, CPC, and CLLE, effectively addressing boundary regions, class
imbalances, and small objects.

Figure 4: Segmentation results. The results of ACDC and SMO are shown for models trained
with 5% of data, while results for Covid19 are shown for models trained with 10% of data.

Table 2 presents the results of an ablation study on the features and similarity used in
contrastive learning, showing the average mIoU across five cross-validation trials utilizing
5% of the ACDC dataset. The "features" used in contrastive learning include "class imbal-
ance": features in a state of class imbalance, "class balance": features achieved by equal
sampling across classes to eliminate class imbalance, and "+ edge": features that, in addition
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to resolving class imbalance, also differentiate between the boundary and internal regions of
objects (our proposed method). "Similarity" refers to the similarity function used for com-
puting contrastive learning. The hyperparameter κ was calibrated in 0.5 increments ranging
from 0.5 to 5.0 and the model with the highest validation accuracy was selected for testing.
The top row represents the baseline, U-Net, which uses only LCE .

When ’feature’ was changed to our proposed method (4th row from the top), there was a
5.81% improvement in accuracy over the baseline. Furthermore, changing ’similarity’ from
the conventional cosine similarity to our proposed GGD-vMF resulted in an additional 1.36%
increase in accuracy. These results confirm the effectiveness of our proposal to resolve class
imbalance and bring the features of boundary regions closer to those of internal regions.
Additionally, our new similarity function, GGD-vMF, characterized by a narrow peak and a
broad base, proves to be highly effective.

Table 2: Results of ablation study on features and similarity used in contrastive learning.
w/LBCL feature similarity mIoU

- - - 64.97%
✓ class imbalance Cos 67.33%
✓ class balance Cos 70.06%
✓ + edge Cos 70.78%
✓ + edge t-vMF(κ = 0.5) 71.17%
✓ + edge GGD-vMF(κ = 0.5) 72.14%

5 CONCLUSIONS
In this paper, we introduced a new label-efficient learning method called BCLL. To addresses
the issue of poor segmentation accuracy in small objects due to class imbalance, BCLL cre-
ates a feature head for each class and performs equitable sampling from features specialized
to each class. Furthermore, new contrastive learning approach in BCLL, named BCL, re-
solve the issue of poor segmentation accuracy in object boundary areas using only a limited
number of labeled data. By applying average pooling filters to annotated images, BCL ob-
tains positional information about the boundary and internal regions of classes. By using
features extracted from these regions, BCL computes various combinations of contrastive
losses in a single image. BCL not only brings features of the same class closer and distances
features of different classes but also designs contrastive losses to align features in boundary
regions closer to features in internal regions, thereby enhancing the segmentation accuracy
of challenging boundary parts with few labeled data. Additionally, we introduced a new
similarity function, GGD-vMF, which facilitates learning with limited supervised data. Our
experiments on three datasets demonstrated that BCLL surpasses the baseline U-Net and
other label-efficient medical image segmentation methods, achieving the highest accuracy.
Specifically, BCLL improved accuracy by 7.17% on ACDC with 5% labels, 7.74% on SMO
with 5% labels, and 0.44% on Covid19 with 10% labels compared to U-Net.
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