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A On the effectiveness of buffer consolidation

By combining AER with ABS we obtain a balance between purity — for samples of the
current task — while preserving the complexity of those from the past. To achieve this, the
backbone network had to be trained on a stream of noisy data. While we find that the effect
of noise from the current task is mitigated by AER (Appendix C), we can further reduce its
influence with the help of the memory buffer.

In principle, with an ideal sample selection strategy we could simply train on samples
from M to adjust the predictions of the network at the end of the task in a fully-supervised
fashion (buffer fit.). While we empirically find in Sec. 4 that such a strategy delivers re-
markable results, we can refine it to handle more complex noise scenarios.

In particular, we use a modified version of MixMatch [3] to obtain a more robust model,
using the most uncertain samples as a source for unlabeled data. Similarly to [1], we fit a
two-component Gaussian Mixture Model (GMM) g(£) on the loss £ of each (x,7) € M.
Then, we compute the perceived uncertainty of each sample u(x) as the posterior g(/|£),
where [ indicates the Gaussian component with the smaller mean. Samples are then separated
into pure P and uncertain U with a simple threshold on g(I|£).

From this, samples in P have label j ~ y, thus we can use them to compute a super-
vised loss term. Instead, for x € I/ we compute y using the model’s response on different
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Parameter o

CIFAR-100 G 25% 50% 60% 75% 90%

Asym 40% | 24.76+0.14 | 26.69+0.26 | 28.76+ 051 | 29.70+0.61 | 29.26+0.91 | 29.90+ 0.53
Sym 40% | 27.01+0.84 | 31.99+0.62 | 36.92+0.55 | 38.52+0.70 | 38.64+0.57 | 39.40+ 0.70
Sym 60% | 15.30+0.44 | 17.35+0.06 | 20.74+0.48 | 24.61+0.55 | 26.34+0.85 | 30.67+1.26

Table A: FAA [1] on CIFAR100 with varying noise to assess the influence of o
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Figure A: Effect of AER on the speed at which the model learns the noisy data
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Finally, we obtain the refined set Q = {(x,¥) : (x,¥) € U} and follow up with the Mix-
Match procedure to compute the supervised and self-supervised loss terms £; and £, re-
spectively. The overall loss term is computed as L£; + A,L,, where 4, is a regularization
hyperparameter.

B On the influence of the hyperparameter o

In this section, we want to carry out a sensitivity analysis targeting the value of ¢. Recall
that alpha controls the proportion of samples to be discarded from the insertion phase within
the buffer. We here report the results yielded by several a values under three different noise
settings (asymm. 40%, symm. 40%, symm. 60%). The experiments, reported in Tab. A,
are conducted on Split CIFAR-100, with performance measured in terms of Final Average
Accuracy. It can be concluded that & >= 50% is a good choice, with gains that stabilize
around 60% — 70%. In our experiments, we remark that we avoided tuning ¢ and set the
same value for every dataset/noise ratio/noise type.

C On the effectiveness of AER as a regularizer for CNL

Here, we further provide evidence of the impact of AER on the overall performance of the
model. In particular, in Fig. A we depict the final accuracy (FAA) and the loss of the noisy
samples from the current task of ER-ACE with and without AER during the second task of
Split CIFAR-10.
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Computational Cost PuriDivER PuriDivERME OURSs

Total Time (hours) 5h15m 2h50m 1h30m
Epoch Time (seconds) 76.90s 15.69s 18.56s

Task Time (minutes) 73m50s 19m39s 16m33s
Memory Used (GB) 7.77 7.50 6.75

Table B: Comparison of Computational Cost [|] of different methods when trained on
CIFAR-10 with 40% noise.

Surprisingly, we find that AER vastly reduces the rate of convergence of noisy samples,
which just by itself improves over the baseline in terms of FAA. Indeed, in rehearsal CNL
providing a purified and diverse set of examples to counter forgetting is only part of the
challenge: as the model is subjected to a continuous stream of noisy data from the current
task, an important effect is to reduce the speed with which noisy samples from the present
are learned.

D On the computational demands of CLN methods

We perform all the experiments on a Tesla V100-SXM2-16GB GPU. In Tab. B we report the
computational costs of different methods in our setting, in terms of runtime and consumed
memory.

Not only our method achieves superior performance, as shown in Tab. 1, but also exhibits
a lower overall training time.

E Additional details on SPR and CNLL

In the main paper we provide a comparison between our proposal and SPR and CNLL.
Nevertheless, as these methods were originally designed for the single-epoch setting, we had
to design specific adjustments to make them viable for our scenario.

SPR initially stores samples in a delayed buffer — then splits into clean and noisy sets,
with the former stored in a separate long-term buffer — and then optimizes the model for ap-
proximately 7,000 training iterations through a self-supervised (SSL) objective. This implies
that SPR involves approximately 448 x iterations than standard training', making it unfeasi-
ble for our scenario due to time constraints. Indeed, while on CIFAR-10 our method takes
around 16 minutes to complete 1 task (Tab. B), SPR would require over 119 hours. We thus
opt to distribute the training iterations of SPR across 25 epochs (see Tab. 2). Finally, as SPR
employs two distinct memory buffers, we set the buffer size to 1000 for a fair comparison.

CNLL uses variable-length buffers to store confident clean and noisy samples, which im-
plies a CL setting with unrestricted memory across tasks. To ensure fairness in comparison,
we adhere to the well-established memory-budgeted CL [5, 7, 12] setting. Thus, for CNLL
we allocate a total memory budget of 2,500 exemplars across all 5 buffers specified by the
original method.

As we move from the single to multi-epoch setting, we find a reduced effectiveness of
the regularization of CNLL; such a result is in line with our hypothesis of Sec. 3.1: as

]assuming a buffer size of 500, batch size of 32, and 10,000 samples
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more epochs are allowed to learn the current task, sample selection based on the small-
loss criterion fails to distinguish clean and noisy samples. Moreover, we find that such an
outcome is maintained even in an unrestricted setting, where the memory budget is not a
concern.

Finally, the performance gap w.r.t. our proposal is even more pronounced for SPR¥,
where our method attains significantly higher accuracy in considerably less time; indeed,
our reduced version of SPR requires around 109 x more time than our proposal, in line with
our estimation.

F Additional details on the experimental settings and
Final Forgetting

To evaluate our proposal we build upon the open-source codebase provided by Mammoth [4,
5, 6], a CL framework based on PyTorch.

On the choice of datasets and noise

We empirically validate our method on four different classification benchmarks as mentioned
in the main paper. For experiments on CIFAR-10/100 [10] and NTU-60 [11], we corrupt the
labels of the datasets at hand to obtain different noise configurations, which we then keep
fixed for each of the experiments for fairness of results comparison across multiple methods.

In the process of injecting symmetric noise, we replace the ground-truth label with prob-
ability r € [0, 1] determined by the designated noise rate. The asymmetric or class-dependent
noise setting is an approximation of real-world corruption patterns, which alters labels within
the same superclass. For example, in the CIFAR-100 dataset, each image comes with a "fine"
label (specific class) and a "coarse" label (superclass). Here, label transitions are parameter-
ized by r such that the wrong class and true class have probability » and 1 — r, respectively.
This results in sample ambiguity occurring only between similar classes, as it would in a
realistic scenario.

In each experiment, samples from the main dataset are split into disjoint sets based on
their class and organized into tasks, following the ClassIL setup. We obtain the following
versions of the datasets.

Seq. CIFAR-10 The original dataset contains 50,000 train and 10,000 test low-resolution
color images in 10 different classes. During training the model encounters 2 classes per
task, namely (“airplane”, “car”), (‘“bird”, “cat”), (“deer”, “dog”), (“frog”, “horse”), (“ship”,
“truck”).

Seq. CIFAR-100 This original dataset is like the CIFAR-10, except it has 100 classes with
600 images each. Images are grouped into 20 superclasses, thus each image comes with a
"fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it
belongs). Following this categorization, we organize classes in 10 tasks, each containing 5
classes from the same superclass.

Seq. NTU-60 1t comprises 60 action classes with 56,880 video samples, including 3D skele-
tal data (25 body joints per frame), all captured simultaneously using three Kinect V2 cam-
eras. We here split the dataset into 6 tasks of 10 classes each.

Seq. Food-101N The dataset is composed of 101 web-crawled food images, split into 5 tasks
(the first 4 containing 20 classes and the latter containing the remaining 21). Each class is rel-
atively balanced, with an average of around 523 images per class and a standard deviation of
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Benchmark Seq. CIFAR-100 Seq. NTU-60
symm asymm symm
Noise rate 20 40 60 \ 20 40 20 40
Joint 0 0 0 0 0 0 0
Finetune 81.52 71.51 57.96|73.91 54.71 | 85.09 73.46
Reservoir 55.88 55.79 44.90 | 43.48 3522 |54.53 61.33

+ CoTeaching 55.20 5495 36.07 | 54.77 26.03 | 34.30 29.03
+ DivideMix 2233 26773 2094 | 23.45 16.73 | 18.45 18.70

PuriDivER 20.52 1821 14.77 | 22.51 17.26 | 41.29 34.25
PuriDivERME" 2434 25.06 26.83 | 25.40 21.82|25.76 18.41
OURs 22.89 21.26 22.13 | 21.19 16.90 | 12.94 14.05

w. consolidation 19.03 11.67 12.02 | 20.15 9.28 | 8.54 0.29

Table C: Final Forgetting (FF) []] of CNL methods on our selection of bencharks. ¥ Ad-
ditional baselines created by adapting existing loss-based and CL approaches to the multi-
epoch scenario.

around 11 (totaling 52867 images resized to 224 x 224). The dataset contains instance-level
noise, thus simulating a real-world scenario.

Notice that since some labels are incorrect, real class distribution for each task might
vary. Details on the noisy labels injected on Seq. CIFAR-10/100, Seq. NTU-60 are released
with the code.

Training details

Architecture We use ResNet [9] family as a backbone for all the methods involved in our
evaluation. ResNet18 is used for CIFAR-10/100 and ResNet34 is used for Food-101N, as
in [2]. All the experiments do not feature pretraining.

Augmentation We apply random crops and horizontal flips to both stream and buffer ex-
amples, for each dataset at hand. For the implementations of PuriDivER, we use AutoAug-
ment [8] as in the original paper [2].

Training We deliberately hold batch size out of the hyperparameter space and keep it fixed
to 32 for both stream and buffer examples. For each task, we train for 50 epochs for CIFAR-
10/100, and 20 for Food-101N.

Buffer consolidation with MixMatch At the end of each task, we finetune the model on the
buffer examples only, for 255 epochs. During this stage, we use SGD with Warm Restart
(SGDR) through Cosine Annealing and a batch size of 64. For the purpose of label co-
refinement, we set the number of different augmentations 1 of Eq. (1) to perform on the
samples in the uncertain set to 3.

Results in terms of Final Forgetting

We repeat each of the experiments five times. We report in Tab. 1 of the main paper the Final
Average Accuracy for all the experiments, with standard error values.
We also provide the final forgetting measure in Eq. (2) for all methods of the main com-
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parison in Tab. C.

| T2
A ) o r T—1
FF = T—1 /;)f],s.t.f] 7:60?1.?);—2% a; 2)

where atj is the accuracy of the model on the ;" task after training on f tasks. These additional
results depict a lower degree of forgetting of our proposal w.r.t. the baselines.

When paired with Tab. 1 of the manuscript, such evidence shows higher overall effec-
tiveness in learning from a noisy source of data, allowing more stable convergence on the
current task and lower losses due to forgetting.

G Hyperparameters

We choose to use different buffer sizes relying on the dataset length. For experiments con-
ducted on CIFAR-10 and CIFAR-100, the buffer size is set to 500 and 2000, respectively.
We set the buffer size to 500 for experiments on NTU. Finally, we use a buffer size of 2000
for Food-101.

We select the other hyperparameters by performing a grid search and using the Final
Average Accuracy (FAA) as the selection criterion for the best parameters. Here, we report
the best values for each model, categorized by dataset and noise type.

CIFAR-10
Noise type: sym —20%

* Joint: /r: 0.03

* SGD: Ir: 0.03

* OURs: /r: 0.03

e OURs + consolidation: [r: 0.03; Irconsolidation: 0.1; Ay 0.01
e ER: Ir: 0.1; Irpuffer fit.: 0.05

* ER + CoTeaching: Ir: 0.1; Irpyffer fir.: 0.05

¢ ER + DivideMix: [r: 0.1; [ ryuffer fir.: 0.05

e PuriDivER: Ir: 0.001; Irpuer fir.: 0.05; a: 0.1

e PuriDivER.ME: Ir: 0.03; Irpufter fir.: 0.05; oz 0.1
e GDumb: [ryysfer fie.: 0.1

e GDumb + CoTeaching: /ryygse; fir.: 0.01

e GDumb + DivideMix: [ryyffer fir.: 0.03

Noise type: sym —40%
* Joint: /r: 0.03
* SGD: Ir: 0.03

* OURs: [r: 0.03
* OURs + consolidation: [r: 0.03; [7consolidation: 0.1; A, 0.01
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e ER: Ir: 0.1; lrpufter fit.: 0.05

* ER + CoTeaching: /r: 0.03; [rpyfrer fir.: 0.05

¢ ER + DivideMix: [r: 0.03; [rpuffer fir.: 0.05

e PuriDivER: [r: 0.001; Irpufrer fic.: 0.05; a: 0.1

¢ PuriDivER.ME: [r: 0.03; Irpyffer fi.: 0.05; oz 0.1
e GDumb: [ryyfier e 2 0.03

¢ GDumb + CoTeaching: [ryyster fir.: 0.03

¢ GDumb + DivideMix: [ryufter fir.: 0.03

Noise type: sym — 60%

* Joint: [r: 0.03

* SGD: Ir: 0.03

* OURs: [r: 0.03

* OURs + consolidation: Ir: 0.03; Irconsolidation: 0-1; Ay: 0.01
e ER: Ir: 0.1; Irpuffer fit.: 0.1

¢ ER + CoTeaching: Ir: 0.1; Irpyufrer fir.: 0.05

¢ ER + DivideMix: Ir: 0.1; lrpuffer fir.: 0.05

e PuriDivER: /r: 0.001; Irpufrer fic.: 0.05; oc: 0.1

e PuriDivER.ME: [r: 0.03; Irputrer fie.: 0.05; a: 0.1
e GDumb: Iryyfrer fie.: 0.03

¢ GDumb + CoTeaching: /1y fir.: 0.03

¢ GDumb + DivideMix: [ryyfrer fir.: 0.01

CIFAR-100

Noise type: sym —20%

 Joint: /r: 0.03

* SGD: /r: 0.03

* OURs: /r: 0.03

* OURs + consolidation: /r: 0.03; Irconsolidation: 0-05; A,z 0.01
* DividERMix: /r: 0.03

e ER: Ir: 0.03; Irpufter fir.: 0.05

* ER + CoTeaching: /r: 0.03; Iryyfrer fit.: 0.05

¢ ER + DivideMix: /r: 0.1; Irpuffer fit.: 0.01

e PuriDivER: Ir: 0.001; Irpufrer fie.: 0.05; a: 0.1

¢ PuriDivER.ME: [r: 0.03; Irpuffer fi.: 0.05; oz 0.1
e GDumb: [ryyfier fir.: 0.05

¢ GDumb + CoTeaching: [ryyster fir.: 0.05
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e GDumb + DivideMix: [ryyfer fir.: 0.05
Noise type: sym —40%

* Joint: [r: 0.03

* SGD: Ir: 0.03

* OURs: /r: 0.03

* OURs + consolidation: [r: 0.03; Irconsolidation: 0-1; Ay: 0.1
e ER: Ir: 0.03; Irpuffer fit.: 0.05

* ER + CoTeaching: [r: 0.03; [rpufrer fit.: 0.05

¢ ER + DivideMix: [r: 0.1; [rpufter fit.: 0.05

e PuriDivER: [r: 0.001; Iryutrer fi.: 0.05; a: 0.1

e PuriDivER.ME: [r: 0.03; Irpuffer fit.: 0.05; a: 0.1
e GDumb: [ryytfer fie.: 0.05

* GDumb + CoTeaching: /ryysfer fir.: 0.05

* GDumb + DivideMix: [ryyffer fir.: 0.05

Noise type: sym — 60%

* Joint: [r: 0.03

* SGD: Ir: 0.03

* OURs: /r: 0.03

* OURs + consolidation: [r: 0.03; Ir.onsolidation: 0-1; Ay: 0.1
e ER: Ir: 0.03; Irpufter fir.: 0.05

* ER + CoTeaching: Ir: 0.03; [ryuster fir.: 0.05

¢ ER + DivideMix: [r: 0.03; [rpuffer fir.: 0.05

e PuriDivER: [r: 0.001; Irpuffer fi.: 0.05; oz 0.1

e PuriDivER.ME: Ir: 0.03; Irpuffer fit.: 0.05; c: 0.1
e GDumb: Iryyfrer fir.: 0.05

* GDumb + CoTeaching: /ryysfer fir.: 0.05

e GDumb + DivideMix: /rysrer fir.: 0.05

Noise type: asym —20%

* Joint: /r: 0.03

* SGD: Ir: 0.03

* OURs: /r: 0.03

OURs + buffer fit: Ir: 0.03; Iryuffer fir.: 0.05

* OURs + consolidation: /r: 0.03; [7consolidation: 0.03; A,: 0.005
ER: Ir: 0.03; lrpuffer fit.: 0.05

* ER + CoTeaching: [r: 0.03; [ryuster fir.: 0.05
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¢ ER + DivideMix: Ir: 0.03; [ rpufter fir.: 0.01

e PuriDivER: Ir: 0.001; lrpufrer fic.: 0.05; a: 0.1

e PuriDivER.ME: [r: 0.03; Irputrer ie.: 0.05; o 0.1
e GDumb: Iryyfrer fie.: 0.05

¢ GDumb + CoTeaching: [ryyster fir.: 0.05

¢ GDumb + DivideMix: [ryyfter fir.: 0.1

Noise type: asym —40%

* Joint: [r: 0.03

* SGD: /r: 0.03

* OURs: /r: 0.03

* OURs + consolidation: Ir: 0.1; Irconsolidation: 0-03; Ay: 0.1
e ER: Ir: 0.03; Irpufter fir.: 0.05

* ER + CoTeaching: Ir: 0.03; [ryusfer fir.: 0.05

¢ ER + DivideMix: /r: 0.1; Irpuffer fit.: 0.01

e PuriDivER: Ir: 0.001; Irpufrer fir.: 0.05; oc: 0.1

¢ PuriDivER.ME: [r: 0.03; Irpufter fic.: 0.05; otz 0.1
¢ GDumb: [ryyster fie.: 0.05

¢ GDumb + CoTeaching: [ryyster fir.: 0.05

¢ GDumb + DivideMix: [ryfer fit.: 0.1

NTU RGB-D
Noise type: sym —20%

e Joint: [r: 0.1

* SGD: /r: 0.1

* OURs: [r: 0.1

e OURs + consolidation: Ir: 0.1; Irpufrer fir.: 0.1; A2 0.01
* DividERMix: /r: 0.03

e ER: Ir: 0.03; Irpuffer fit.: 0.05

¢ ER + CoTeaching: Ir: 0.1; Irpyufrer fit.: 0.05

¢ ER + DivideMix: Ir: 0.1; Irpuffer fir.: 0.05

¢ PuriDivER: Ir: 0.3; Irpyffer fir.: 0.05; oz 0.1

e PuriDivER.ME: [r: 0.03; Irputrer ir.: 0.05; o 0.1
e GDumb: Iryyfrer fie.: 0.03

¢ GDumb + CoTeaching: [ryygfer fir.: 0.1

¢ GDumb + DivideMix: [ryufter fit.: 0.3
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Noise type: sym —40%

* Joint: /r: 0.1

* SGD: [r: 0.03

* OURs: /r: 0.1

* OURs + consolidation: [r: 0.1; Irpuffer ir.: 0.1; A2 0.01
e ER: Ir: 0.03; Irpuffer fir.: 0.05

* ER + CoTeaching: /r: 0.1; Irpygrer ir.: 0.05

¢ ER + DivideMix: [r: 0.1; [ rpuffer fir.: 0.05

e PuriDivER: I7: 0.3; lrpufter fit.: 0.05; ¢tz 0.1

e PuriDivER.ME: Ir: 0.03; Irpuffer fir.: 0.05; ¢: 0.1
e GDumb: Irpyffer fir.: 0.1

* GDumb + CoTeaching: /ryysser fic.: 0.1

* GDumb + DivideMix: [ryyffer fir.: 0.03
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