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Abstract

Recent advances in attention-based models have raised expectations for an auto-
mated diagnosis application in computer vision due to their high performance. How-
ever, attention-based models tend to lack some of the inherent assumptions for images,
known as inductive biases, which convoultional-based models possess. Herein, we cus-
tomize a vision transformer (ViT) model to enhance the performance with exploiting
locality inductive biases for limited medical images. Specifically, using the ViT model as
a backbone, we propose shift window attention (SWA), deformable attention (DA), and a
convolutional block attention module (CBAM) to leverage the convolutional neural net-
works’ inductive bias towards locality, thereby improving both global and local context of
the lesion. To evaluate the effectiveness and efficiency of our proposed method, we use
various publicly available well-known medical images diagnosis such as HAM10000,
MURA, ISIC 2018 and CVC-Clinic DB for classification or dense prediction tasks. Ex-
perimental results show that our method significantly outperforms the other state-of-the-
art alternatives. Furthermore, we utilize GradGAM++ to qualitatively visualize the image
regions where the network attends to. Our code is available at Medical_CBAM_ViT.

1 Introduction
In the medical field, research on utilizing artificial intelligence (AI) for medical image di-
agnosis has actively been pursued [35]. The use of AI in medicine and healthcare offers
the advantage of enhancing diagnostic accuracy and expediting the decision-making process
for medical practitioners. Recent medical imaging encompasses a variety of visual modal-
ities such as X-ray, magnetic resonance imaging (MRI), and computed tomography (CT).
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Consequently, the integration of AI in medicine helps reduce diagnostic inaccuracies by
medical specialists and streamlines diagnostic procedures, potentially leading to improved
cost-effectiveness [13, 17, 19].

To date, in machine learning of medical images, convolutional neural network (CNN)
architectures have predominantly been used for disease diagnosis [30, 33, 42] primarily due
to relatively good generalization performance even with limited data, which is a crucial ad-
vantage given the lack of data in the medical field. To extract image features, a CNN applies
convolutional filters that slide over the image, using locality and stationarity assumptions.
Thus, CNNs are prone to performance degradation when objects are occluded or do not sat-
isfy the locality conditions [4]. In contrast, in general computer vision, recent research has
been focused on attention-based models through vision transformer (ViT) models [12, 34].
The ViT model performs attention operations over the entire image to capture the global
context, leading to improved performance [8]. However, a drawback is that ViT models re-
quire more training time and data compared to CNNs, that exploit locality and stationarity,
primarily due to the insufficient inductive bias of ViT models [21, 39].

Therefore, we propose a transformer-based architecture that leverages inductive bias for
a variety of visual modalities in medical diagnosis. The proposed architecture incorporates
a window-based attention operation [21] to add locality, which is an inductive bias inherent
to images, while applying deformable attention operation [39] to capture more globally in-
formative features. Additionally, a convolutional block attention module [37] is used at the
network bottleneck of the proposed architecture to integrate both channel-wise and spatial-
wise information of the features.

As a result, our method shows better performance against alternative state-of-the-art
(SOTA) ViT models. To quantitatively evaluate our method, we first use publicly available
medical imaging datasets such as HAM10000C [32], and MURA [25] for classification task
as well as HAM10000S [32] and ISIC 2018 [7] for dense prediction task. We also analyze
our method in detail to support our claims by using the qualitative visualization.

Our contributions are as follows: (i) In medical limited datasets, our method facilitates
the inductive bias of ViT models by integrating shift window attention (SWA), deformable
attention (DA), and a convolutional block attention module (CBAM). (ii) Our experiments
show that our method quantitatively and qualitatively outperforms prior medical diagnosis
methods in various tasks and datasets within a fair and realistic setting.

2 Related Work

2.1 Medical Image Diagnosis

In the early stages of automated medical image diagnosis, computer image processing tech-
niques were employed with hand-designed feature extractors. Specifically, handcrafted fea-
tures such as lesion color, shape, and size were used to discriminate various types of le-
sions [2, 11]. However, traditional learning methods based on feature engineering can intro-
duce issues due to human subjectivity. To address these issues, there has been a gradual shift
towards representation learning or deep learning [16, 20, 36].

Initial deep learning-based medical image diagnosis approaches primarily utilized CNN-
based architectures structurally specialized for image data, relying on assumptions of locality
and stationarity, yielding significant results. To leverage the semantic information of com-
prehensive images alongside local information, modified CNN-based methods specialized
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for medical imaging data have emerged [16, 20, 36]. These include DCNN [36], with ker-
nel size variations tailored to medical imaging; GCCN [16], based on Gabor wavelet inner
products; and FixCaps [20], which utilizes capsule networks to jointly capture channel and
spatial information, achieving better performance in dense prediction tasks. However, these
CNN-based methods still face limitations in effectively capturing global semantic informa-
tion [23].

Recently, ViT models have gained prominence by learning the global context of images
via attention mechanisms, enabling them to extract more comprehensive semantic informa-
tion. In medical computer vision, where precise diagnosis requires leveraging both local and
global information, approaches using ViT models have been emerging[1, 10, 22].

2.2 Vision Transformer-based Architectures
The transformer architecture was first introduced in natural language processing and ex-
hibited overwhelming performance across all language tasks[34]. In the field of computer
vision, ViT models emerged, and demonstrated overwhelming performance across various
vision tasks [8]. ViT models divide a image into patches and apply attention between them,
offering advantages in learning global context. However, compared to CNNs, it has limita-
tions due to a lack of locality inductive bias.

To address the issue of insufficient locality inductive bias in ViT models, of a landmark
work, the Swin Transformer [21] model employs a hierarchical architecture and shifted win-
dow attention, while DeiT [31] uses knowledge distillation to leverage the knowledge of
pre-trained CNNs. CvT [38] is a hybrid model that adds convolutional blocks to the trans-
former architecture. Similarly, in the medical computer vision domain, hybrid CNN and ViT
models like MedViT [22] have achieved SOTA performance.

3 Method
We propose a enhanced ViT model that leverages locality inductive bias to comprehensively
understand not only the local lesion areas in a medical image but also the relationships be-
tween global regions surrounding the lesion. Our model is particularly effective in medical
computer vision, where understanding the overall organ appearance as well as the local le-
sion areas is important for a more accurate diagnosis.

Our model utilizes the following three modules to address locality inductive bias: (i) stem
block, (ii) shift window attention (SWA) block, and (iii) deformable attention (DA) block.
Our stem block consists of two convolutional layers to preprocess the input image, captur-
ing low-level features (Section 3.1). SWA block uses attention-based layers to extract local
information, guiding a model toward having locality inductive bias (Section 3.2). DA block
uses deformable attention layers to extract spatial cues spanning a larger area (Section 3.3).
Moreover, to enable the extraction of diverse feature maps, convolutional block attention
module (CBAM) is incorporated at the last of every stage (Section 3.4). Our architecture is
shown in Figure 1.

3.1 Stem Block
In the original ViT model, an input image is split into fixed-size patches, each linearly em-
bedded. Sequence of the embedded patches is then fed into a transformer encoder. Patch-wise
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(a) Model Architecture

Figure 1: (a) An overview of our proposed model. Built upon Vision Transformer, we use the
following three building blocks: (1) Stem Block, (2) SWA Block for 1st and 2nd stages, and
(3) DA Block for 3rd and 4th stages. In image classification, the output feature map under-
goes Global Average Pooling(GAP) and MLP processing. For segmentation, fused feature
maps with Fused Feature Pyramid Network(FPN) from Stages are utilized. (b, c, d) Detailed
Explanation of Local Attenton, Shifted-Window Attention and Deformable Attention

encoding has the advantage of learning rich representations. Similar to the prevalent practice
in numerous prior ViT models, we employed two 3×3 convolution layers as a preprocessor
to encode low-level features [41].

3.2 Shift Window Attention (SWA) Block
Common ViT models, which struggle to leverage local inductive bias, generally require sig-
nificantly huge training datasets compared to CNNs to achieve comparable performance. In
healthcare and medical domain, data acquisition is often challenging due to strict regula-
tory requirements and the need for knowledge-intensive guidance from medical specialists.
Therefore, a modified architecture that can leverage inductive bias is required to effectively
apply the ViT model to medical image diagnosis.

We propose to use the shift window attention (SWA) block, which utilizes a localized
attention module to induce the effect of locality inductive bias. Supposing each window has
M×M size, the computational complexity of a SWA is computed as

Ω(SWA) = 4HWC2 +2M2HWC (1)

where C is the feature dimension and input image size is H ×W .
As shown in Figure 1, our SWA block consists of three main layers: (i) local attention,

(ii) shift window attention, and (iii) CBAM.
Local Attention: As shown in Figure 1 (b), our local attention layer uses a window

of pre-determined size to divide the feature map, generating attention weights accordingly.
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Figure 2: Detailed architecture of channel and spatial attentions.

And self-attention has been seperately applied on each divided windows, similar to what is
depicted. To incorporate relative positional information for each window, we add relative
positional encoding to divided windows while calculating self-attention. Thus, we constrain
the model to extract local features, injecting appropriate locality inductive bias.

Shift-Window Attention: As shown in Figure 1 (c), our shift window attention layer
then operates between local features, generating attention between windows and allowing
the model flexibility in its representation. During this process, the feature map is divided
as shown in Figure 1 (c), then the windows are rotated similar to what is depicted. And
following the same process as in Figure 1 (b), self-attention is applied.

3.3 Deformable Attention (DA) Block
The previous SWA block focuses on extracting local information by using a window-based
constraint, but a model also needs to understand global (or contextual) information to recog-
nize legions, which often span broad areas. To effectively extract such contextual informa-
tion, we use a deformable attention layer, which can flexibly see wider regions with a larger
receptive field. Similar to the previous SWA block, our DA block consists of three layers:
(i) local attention, (ii) deformable attention, and (iii) CBAM layer. We use the same layers
for (i) and (iii) with the SWA block. The deformable attention layer is highly influenced by
the size of the feature map since it samples reference points from the feature map and then
computes offsets through a sub-network. Therefore, it is applied towards the latter part of the
model where the size of the feature map becomes relatively smaller.

Deformable Attention: As shown in Figure 1 (d), our deformable attention layer uni-
formly samples reference points from the feature map, and then uses offsets from the sam-
pled points to flexibly select features. Offsets are computed by an sub-offset network which
composed of two CNN layers. The values corresponding to the selected points through the
offsets are used as the key and value in the multi-head attention. And a linear operation is
applied to the entire feature map to use as query. Through this process, our model can focus
on relevant areas with a flexible window, capturing contextual and global information. The
computational complexity of DA is

Ω(DA) = 2HWNsC+2HWC2 +2NsC2 +(k2 +2)NsC (2)

where Ns is the number of sampled points and k denotes the kernel size of convolution layers
in the sub-network that calculates the offset.
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Dataset HAM10000C [32] HAM10000S [32] MURA [25] ISIC 2018 [7] CVC-Clinic DB [5]

Train/Val./Test 51,646 / 1,006 / 828 9,187 / - / 828 36,608 / - / 3,197 2,594 / - / 100 551 / - / 61

Task Classification Segmentation Classification Segmentation Segmentation

Type of diagnosis Pigmented skin lesions Pigmented skin lesions Fracture Dermatoscopy Colon polyp

Table 1: Description of datasets used in experiments.

Type Networks Details Classification Segmentation

Resolution Params(MACs) FPS HAM10000C MURA +Decoder HAM10000S ISIC 2018 CVC-Clinic

CNN

ResNet50[14] 224×224 25.6M(4.1G) 184.0 0.973 (0.977) 0.720 UperNet 0.925 (0.919) 0.882(0.886) 0.849
GoogLeNet[28] 224×224 13.0M(1.5G) 152.2 0.940 (0.964) 0.749 UperNet 0.925 (0.922) 0.879 (0.889) 0.839

Inception V3[29] 299×299 27.2M(2.9G) 100.6 0.973 (0.952) 0.713 UperNet 0.922 (0.921) 0.879 (0.888) 0.838
MobileNet V3[15] 224×224 5.5M(0.2G) 171.1 0.971 (0.973) 0.710 UperNet 0.924 (0.919) 0.897 (0.894) 0.820

FixCaps[20] 299×299 0.8M(1.4G) 81.5 0.961 (0.966) 0.683 Autoencoder 0.747 (0.739) 0.737 (0.738) 0.752

ViT

ViT-B/32[8] 224×224 88.2M(4.4G) 146.3 0.960 (0.955) 0.654 UperNet 0.908 (0.905) 0.871 (0.866) 0.770
Swin-B[21] 224×224 87.8M(10.2G) 27.0 0.954 (0.936) 0.743 UperNet 0.928 (0.924) 0.884 (0.880) 0.813
MedViT[22] 224×224 45.4M(8.44G) 36.4 0.930 (0.907) 0.787 UperNet 0.838 (0.842) 0.825 (0.857) 0.874

Ours 224×224 59.7M(15.8G) 32.0 0.982 (0.978) 0.754 UperNet 0.940 (0.933) 0.898 (0.888) 0.854

Table 2: Comparison of classification and segmentation performance on various datasets.
Note that scores in parenthesis represent results with the black-hat transform as preprocess-
ing. Bold text indicates the best performance, while underlined text indicates the second-best
performance among all models.

3.4 Convolutional Block Attention Module (CBAM)

In a transformer architecture, attention is conducted on the spatial dimensions H ×W from
an input image I ∈ RH×W×C. Therefore, the operations across the spatial dimensions lead
to a diminished correlation between features extracted across the channels. This is particu-
larly crucial in tasks like segmentation, where the channel dimension detects what object is
present, and each channel’s H ×W dimensions detect where the object is located [24, 37].
Hence, in this paper, we design the modified transformer architecture with applied inductive
bias to apply CBAM at each bottleneck. This adaptive utilization of the extracted features
enables the model to achieve high performance not only in classification but also in dense
prediction tasks such as segmentation [9].

As shown in Figure 2, our CBAM layer consists of channel-wise and spatial-wise atten-
tion with a skip connection. Therefore, by integrating these two types of information, each
with its distinct features, it can effectively extract the refined representations. We employ
channel attention and spatial attention separately, using the CBAM module for input feature
maps with negligible overheads. In particular, given an input I ∈ RH×W×C, each attention
operation calculates the average and maximum values, at both the spatial and channel levels,
as shown in Figure 2.

4 Experiments

4.1 Datasets

We use the following datasets for the performance evaluation of the model in various publicly
available datasets : HAM10000C, HAM10000S [32], MURA [25], ISIC 2018 [7], and CVC-
Clinic DB [5]. We provide about statistics and details of used datasets in Table 1.
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Input ResNet50 [14] GoogLeNet[28] InceptionV3[29] MobileNetV3[15]

FixCaps [19] VIT-B/32[8] Swin-B [20] MedViT [21] Ours

Input ResNet50 [14] GoogLeNet[28] InceptionV3[29] MobileNetV3[15]

FixCaps [19] VIT-B/32[8] Swin-B [20] MedViT [21] Ours

Figure 3: Visualization comparison using GradCAM++ [6] for ours and alternative models.
Data: HAM10000S

4.2 Experimental Results

Classification. Based on HAM10000C [32] and MURA [25] datasets, we train our model
end-to-end from scratch, and we compare its classification top-1 accuracy with other alter-
native models such as CNN-based and ViT-based models.

We observe in Table 2 for the HAM10000C [32] dataset that our proposed model gen-
erally outperforms the SOTA visual recognition models in terms of average top-1 accuracy
with a large gain. Ours shows 98.2% in accuracy, which is 0.9-5.2% higher than alternatives.
For the MURA [25] dataset, our model shows the second-best performance to the SOTA
model while outperforming other CNN-based models. In particular, ViT-B/32, when trained
on limited medical imaging datasets, demonstrates relatively lower performance compared
to CNN-based models due to its lack of inducitve bias.

Dense Prediction. To evaluate the performance in dense prediction for each model, we
also conduct a segmentation task. We use mean intersection over union (mIoU) metric to
evaluate the segmentation task. Each backbone model, pre-trained on image classification
data, is fine-tuned for segmentation by connecting it to a segmentation decoder and training
the entire model. We use a UperNet [40] which is Unet [26] based decoder. In the Uper-
Net [40] architecture, segmentation is performed by utilizing four different feature maps of
different sizes obtained from the backbone network. As depicted in Figure 1, we extract
feature maps from the corresponding stage of each backbone network and employ them as
inputs for the segmentation process of UperNet [40]. Note that FixCaps [20] is built upon
CapsNets [27], which is not possible to use UperNet-style multi-scale decoders. Instead, we
use the standard decoder architecture from Autoencoder [18].
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Figure 4: Visualization of ground truth and corresponding segmentation results obtained by
ours and other alternative models. Data: HAM10000S

As shown in Table 2, we present the evaluation results of segmentation performance
on the HAM10000S [32] dataset, ISIC 2018 [7] and CVC-Clinic DB [13] using a backbone
model pre-trained on HAM10000C [32]. Looking at the performance on both HAM10000S [32]
and ISIC 2018 [7], ours outperforms other models. Notably, ours shows better performance
than the Swin-B [21], which uses shift-window attention to alleviate inductive bias of the ViT
model. This indicates that the SWA and DA blocks, along with CBAM in our model, capture
not only ViT’s global context but also local context through channel and spatial attention,
making it effective for dense prediction [9].

To assess the performance of the model in various datasets, we utilize colonoscopy data
from CVC-Clinic DB [13]. The backbone model is pre-trained on HAM10000C [32]. This
decision was made because diagnosing skin cancer and colonoscopy both require color
and shape information under similar conditions. As shown in Table 2 for the CVC-Clinic
DB [13], ours demonstrates the comparable performance to other SOTA model on colonoscopy
data. Particularly noteworthy is the performance difference with ViT-B/32, which does not
add inductive bias, showing an 8.4% gap, and with Swin-B [21], showing a 4.1% difference.
This interpretation can be attributed to the effective extraction of feature maps, which are
more suitable for dense prediction using CBAM [9].

We conducted additional experiments with the HAM10000C, HAM10000S [32], ISIC
2018 [7] datasets using black-hat transform preprocessing. The black-hat transform is a pre-
processing technique that removes irrelevant elements of the lesion such as hair, which could
affect dermatoscopy diagnosis [3]. The parentheses in Table 2 show a comparison of all mod-
els applying the black-hat transformation preprocessing.

For CNN-based models, the performance of those applying the black-hat transform pre-
processing increases compared to those that do not apply it in most cases. In contrast, for
ViT-based models, applying the black-hat transform preprocessing does not enhance per-
formance. These results suggest that removing irrelevant elements helps only CNN-based
models by allowing them to focus on the lesion. However, our method guarantees the best
performance regardless of whether the black-hat transform preprocessing is applied.

As shown in Figure 3, we apply GradCAM++ [6] to qualitatively analyze perceptual
regions, which the model focuses on for the final verdict. The well-known GradCAM++ [6]
is a visualization technique that utilizes gradients from the output to determine which regions
of the image are deemed important by the network. We observe that our model demonstrates
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a heightened concentration on clinically significant regions associated with lesions compared
to other models.

From the visualizations of GradCAM++ [6] in Figure 3, we observe that while CNN-
based models generally attend to regions near the lesions, ViT-based models such as ViT-
B/32, Swin-B [21], and MedViT [22] fail to focus on the lesion area. This indicates that
existing ViT-base models, which lack locality inductive bias, are skewed toward less im-
portant global information. However, our model, compared to both CNN and ViT models,
effectively distinguishes important regions of the lesions by appropriately utilizing both local
and global contexts.

As shown in Figure 4, which visualizes the segmentation results on the HAM10000S
dataset, our model produces segmentation results that are closest to the ground truth.

5 Conclusion

In this paper, we utilized inductive bias to apply a ViT model with high generalization per-
formance in the medical computer vision domain, where data is limited. To enhance perfor-
mance in the classification and dense prediction tasks, which involves understanding both the
global and local context of lesions in medical diagnosis, we modified the ViT model using
SWA, DA, and CBAM.

As a result, our proposed method shows comparable performance to other SOTA alterna-
tives such as CNN-based and ViT-based models. The performance comparable to that of the
SOTA visual recognition models confirmed that leveraging inductive bias in ViT is effective
for medical image diagnosis. Furthermore, to validate stability, visualization technique was
employed to verify whether the predictions made by each model were based on valid regions
in the image. The results confirmed that ours made diagnoses based on valid areas compared
to other comparing models, providing evidence of the model’s stability.

Our work significantly contributes to enhancing diagnostic accuracy not only in the field
of skin cancer but also in various other medical computer vision domains, such CT and MRI.
Furthermore, the potential expansion of our approach holds promising prospects for next-
generation of healthcare and medicine through large language models and large multi-modal
models based on the transformer architecture.
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