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1 Architecture Design
In this section, we provide a detailed description of the G3FA model architecture for better
understanding. We will focus on each module, starting with the keypoint extractor and
concluding with the discriminator architecture. We will skip the theoretical aspects of all
modules such as volume rendering, inverse rendering, and generative models, as they have
been extensively covered in the referenced papers.

Key point Detection: To identify keypoints, we employ a U-net based[3] Autoencoder
model as in [4], and shown in Fig. 2. This model takes an RGB image from the source
or driving frame as input and produces heatmaps. By fitting a Gaussian function to the
heatmap, we estimate the coordinates of the keypoints and their corresponding Jacobians.
In our experiments, we select 15 keypoints and calculate 2×2 Jacobians for each of them.

Dense Motion Estimation: We adopt the dense motion architecture proposed in [4].
As depicted in Fig. 3, we first obtain keypoints from both the source and driving images.
To increase speed, we downsample the source image and perform sparse motion estimation
based on the keypoints. Using the deformation map derived from this sparse motion, we
deform the source image. We utilize a heatmap to capture the changes between the source
and driving keypoints. Furthermore, we obtain masks for each keypoint, labeled from 0 to
k as {M0,M0, ...,MK}, with the first mask specifically designed to ignore the background,
while the remaining masks are utilized for warping source image features in subsequent
steps as demonstrated in Fig. 1.

3D Feature Extraction: As demonstrated in Fig. 4, in order to render the animated
face, we need to extract 3D features comprising shape and color information as proposed
by [6]. We employ a 2D convolutional layer for color extraction and a ResBlock3D, which
incorporates 3D convolutions with skip connections, to extract shape-related features in 3D.

Orthogonal Adaptive Ray-Sampling: In this module, depicted in Fig. 5, we leverage
the 3D shape and color features to derive voxel probabilities and sample the color field. This
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Figure 1: This figure visualizes the training process of our face animation model, achieved
through self-supervised learning of occlusion map and weight masks.
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Figure 2: Architecture of keypoint extractor module.

module is implemented as a Multi-Layer Perceptron (MLP) as in [6] and plays a crucial role
in the volume rendering process.

Rendering Decoder: Inspired by [6] and illustrated in Fig. 6, we concatenate warped
source image features with the output of the volume rendering process, which results in a
rendering feature map. This concatenated input is then passed through a series of SPADE
layers[2] followed by 2D upsampling layers, enabling us to generate sharper rendering
results. As shown in the figure, this decoding process significantly enhances the overall
rendering quality.

Discriminator: For RGB, depth, and normal maps, we utilize the same discriminator
architecture, except for the first layer where the depth map only has one channel. Following
the approach described in [6], we incorporate a series of 2D Downblocks and Spectral
Normalization[1] layers to generate the prediction map, as depicted in Fig. 7.
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Figure 3: Architecture of dense motion extractor module.
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Figure 4: Architecture of 3D feature extractor module.
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Figure 5: Architecture of orthogonal adaptive ray-sampler module.

In Table 1, we presented an analysis of the count of trainable parameters, along with the
inference time measured in frames per second (FPS) on an RTX4090. As evident from
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Figure 6: Architecture of rendering decoder module.
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Figure 7: Architecture of discriminator module.

this table, G3FA exhibits a comparable number of parameters to FNeVR. However, G3FA
delivers exceptional outcomes. Moreover, when compared with alternative methods, only
FOMM and LIA achieve higher inference speeds, although they encounter issues with
accurate reenactment. As shown in Table 2, the total number of trainable parameters in
our model is comparable to that of FNeVR. The table highlights that each discriminator
comprises only 4% of the total parameter count.

2 Ablation study

In order to validate the optimal configuration of our G3FA model, we conducted a
comprehensive ablative analysis. Initially, we explored a scenario where a single
discriminator was employed, with the depth image concatenated to the RGB input and
presented as either real or generated data. However, this approach exhibited suboptimal
convergence and manifested fluctuations across epochs. Consequently, as indicated in
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Table 1: Quantitative assessment of model efficiency: Trainable parameters (M) and
inference speed (FPS) analysis.

Method Params (M) FPS
FOMM 59.767 75.49
Face vid2vid 125.216 19.36
DaGAN 74.660 28.93
LIA 69.116 77.17
FNeVR 61.378 52.72
Ours 61.534 51.90

Table 2: Comparison of module parameters in G3FA

Model Parameters(M)

Generator 39.041
RGB Discriminator 2.758
Depth Discriminator 2.756
Normal Discriminator 2.758
Keypoint Detector 14.522
Ours_total 61.564
FNeVR_total 61.378

Table 3: Ablation study of same-identity reconstruction on TK[5].

Method L1 ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ AKD ↓
FNeVR baseline 8.12 0.097 24.47 0.69 19.56 1.74
G3FA + depth 8.04 0.092 25.77 0.73 18.47 1.66
G3FA + normal 8.10 0.095 24.32 0.70 20.93 1.70
G3FA (ours) 7.89 0.084 27.26 0.71 16.41 1.62

Table 3, we proceeded to evaluate our framework with one discriminator using RGB
images and another discriminator employing either depth or normal data. The definitive
version, which serves as the main architecture in our paper, incorporates both RGB and 3D
information, employing separate discriminators, yielding superior outcomes. Notably, the
determination of optimal discriminator weights, which we plan to combine, constituted an
essential aspect of our framework. Through a series of experiments, we explored dynamic
weighting schemes wherein λdepth and λnormal were incrementally increased every 10 epochs,
or set to zero for initial epochs. However, none of these configurations yielded improved
results.

To determine the optimal value of the hyperparameter λ , which determines the extent
of incorporating 3D information in adversarial training, an experiment was conducted and
the results are presented in Fig. 8 for three distinct values where λ = λdepth = λnormal .
As evident from the graph, during the initial epochs, a higher value of λ accelerates the
model’s convergence by demonstrating a significant reduction in the perceptual loss value.
All discriminators, in this scenario, make comparable contributions to the adversarial loss
due to their combination weight. When the rendering module falls short in generating
photorealistic samples, the inverse rendering module likewise struggles to generate accurate
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Figure 8: Perceptual loss values for various λ settings across 100 epochs on TK[5].

depth and normal maps. Consequently, these inaccuracies become distinguishable as fake
samples for the discriminator. This compels the generator to significantly enhance its outputs
to achieve the same quality as real samples. This will force the generator to produce much
better results to be indistinguishable from real ones. Nevertheless, an excessive reliance on
3D information induces a decline in overall quality at the end of the training process. We
selected λ = 25%, as an intermediary value, striking a balance by leveraging the benefits of
early model advancement while maintaining a sufficient emphasis on RGB values.
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