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Abstract

Comics present images in a sequence, where the spatially presented sequence is key
to the narrative storytelling. To understand a comic, a comprehender must learn to encode
this sequential nature. For this we present a novel self-supervised sequential represen-
tation learning method designed for comics. Our approach capitalises on the sequential
structure of comics to incorporate contextual information. We conduct experiments on
the TINTIN Corpus of 1,000+ comics from 144 countries, and show that our method
outperforms baseline methods on both classification and retrieval tasks. These results
affirm the effectiveness of sequential representation learning for comics, and may aid in
uncovering new cultural insights within comics.

1 Introduction
Comics provide insight into cultural narratives, visual storytelling, and human expressive-
ness [1, 4, 26, 32]. They serve not only as entertainment but also as a mirror reflecting cul-
tural and societal constructs. To analyse these constructs within comics at scale we require
robust representations that are sensitive to the visual patterns within comics. Yet, dissecting
comics into stylistic and semantic building bricks is a difficult endeavour [3, 8, 9]. Comics
are inherently complex, characterised by a unique blend of visual artistry and textual narra-
tive - also described as visual language [9]. This diversity in artistic styles poses a significant
challenge for the quantification and annotation of comics. To overcome these issues and to
learn comic representations we propose to leverage the sequential nature of comics panels as
an inductive bias, and learn comic representations without supervision.

Through learned representations, we aim to work towards a quantitative understanding of
comics. Such understanding could offer insights into difference in visual storytelling across
different cultures. This analysis extends beyond the identification of basic stylistic elements
to encompass a wide range of patterns depicted in comics. By systematically analysing these
representations, we can uncover underlying patterns in how comics are constructed and their
narrative structure [9].
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In this work we introduce a novel method for explicitly modelling the sequential nature
of comics. To achieve this we introduce a training method for sequential image modelling
taking inspiration from masked language modelling. We show that our method outperforms
prior self-supervised methods such as DINO [6] and OpenCLIP [7] for comic representation
learning on various evaluation tasks. Finally, we evaluate the individual components of
our method through a comprehensive ablation study. All code for this research is publicly
available at https://github.com/samtitar/ASTERX.

2 Related Work
Quantitative approaches to cultural analysis of comics, have enabled an increased under-
standing of visual storytelling across different cultures in recent years [26]. [8] and [11] in-
troduced categorisations of scene framing techniques within panels. Their research revealed
distinct framing practices among comics across cultures. This is extended in [12] to the lay-
out of panel sequences, by introducing a systematic framework for evaluating page layouts,
and facilitating a comparison of comics from six different cultural origins. Their findings
provide insight into differences in layouts, further emphasising the cultural specificity in
comics. A framework for analysing continuity of panel sequences is further introduced in
[3], which enabled a detailed comparison of narrative structures across comics from different
cultural origins, revealing variations in continuity between these origins.

Integration across several domains of structures have also revealed consistencies that
cut across cultural dimensions, suggesting distinctive "visual languages" that correspond
to systems of graphic representations and their storytelling [10]. However, though visual
languages are implicated by patterns of storytelling, their corresponding visual "styles" have
not been as thoroughly analysed. In addition, a challenge for such work is the reliance on
manual annotation of comics.

In parallel, over a decade of computational approaches for comics have emerged using
supervised machine learning [2, 31]. These have used a range of approaches from basic pat-
tern recognition in comic art to complex narrative structure analysis. A substantial portion
of existing work in computational comic analysis can be attributed to advancements in com-
puter vision (CV) techniques, particularly in the automated extraction of key comic elements
such as panels, speech bubbles, and characters. Methods for panel extraction have been ad-
dressed by [21] [28] [20] among others. Their methods leverage various CV techniques to
identify and segment comic book panels. These approaches all leverage annotated comic
panels to train object detection models for panel extraction. Automated text block extraction
methods have been introduced in [30] and [16].

The exploration of computationally-aided analysis of comics has focused on supervised
machine learning, as detailed by [31] and [2]. While these developments contributed to the
field, the reliance on supervised learning again highlights a dependency on extensively anno-
tated datasets. This requirement often limits the scalability of analysis and the adaptability
to the vast stylistic diversity inherent in comics. To overcome these issues we propose to
apply leverage self-supervised learning on the sequential structure of comics.

Self-supervised representation learning offers a rich array of methods that extract mean-
ingful representations from data without the need for labeled datasets. Several strategies
that have advanced the field are DINO (Self-Distillation with No Labels) [6], DINOv2 [27],
and CLIP [29]. The two former methods employ self-distillation within a vision transformer
(ViT) [34] in a student-teacher setup to construct rich image representations. Different views
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Figure 1: Overview of ASTERX. Individual panels are encoded with a backbone, after which
the sequence of panels is encoded by our sequence encoder. This sequence encoder is opti-
mised for both panel retrieval and panel order classification. In our experiments, the sequence
encoder is a transformer encoder [34], where each input token is a panel feature vector en-
coded by an image encoder backbone.

of the same image are passed through the student and teacher models to optimise feature-
level similarity. On the other hand, CLIP utilises image-caption pairs to jointly learn rep-
resentations of both image and caption by minimises the distance between representations
extracted from them. A challenge for comics is that, while panels may contain text, these do
not take on the role of captions and would not be suitable for CLIP-style training.

A corner stone for self-supervised learning and a key enabler of existing methods, is
data scale [27], where the performance of these methods greatly benefits from large-scale
datasets. While the COMICS dataset [23] consists of 1.2M comic panels, this is still small-
scale when compared to the 142M dataset for DINO [27] or the 400M for CLIP [29]. The
limited availability of data for comics may make it challenging to apply these existing meth-
ods on them, so instead we propose a comic specific self-supervised learning method which
leverages the sequential nature of the panels as inductive bias.

3 ASTERX

Our proposed method, A Self-supervised Transformer Encoder for comic panel Representat-
ion eXtraction (ASTERX, named after the comic character Asterix) is designed to learn from
the sequential nature of comics. Our technique is inspired by masked language modelling
[14], as we leverage narrative continuity embedded within adjacent panels to learn comic
panel representations. As discussed in [3, 12, 22], the continuity of such aspects in sequences
of panels in comics are of great significance to cultural analysis in comics.

ASTERX models sequences of comic panels with a transformer [34] encoder (Figure 1).
To enable analysis at both panel-level and sequence-level a special [CLS] token is prepended
to each sequence, with one input tokens per individual panel. The [CLS] token captures the
sequence-level information, while panel-level representations are encoded by the matching
output tokens for each input panel. To optimise these representations we train ASTERX with
two tasks inspired by masked language modelling.
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Figure 2: Sequence of panels from Tintin: The Secret of the Unicorn (first row) along with
two candidate samples from the same comic and two from Suske en Wiske and Fullmetal
Alchemist respectively (second row). The correct candidate in green, and incorrect in red.

3.1 Pretext Tasks

During training, the encoder is optimised by means of two tasks: panel retrieval and order
classification. To facilitate these tasks the encoder receives two panel sequences - always
sampled chronological in order - of the same length as input, separated by a [SEP] token.
For the panel retrieval task a single input token (panel) is masked using the special [MASK]
token in the first panel sequence, and the encoder is optimised to produce a representation
that matches the masked panel. The second input sequence is used in a order classification
task. The order of the two input sequences is shuffled at random to facilitate learning of
longer panel distance relations. A linear classification layer takes the output embedding at
the position of the [CLS] token is optimised to classify whether the sequences are in correct
order.

Our approach follows the ideas behind masked language modelling introduced for BERT
[14]. However, a key difference between natural language and visual language is the open
set nature of visual language. Where natural language can be modelled through a discrete
set of for words or tokens (i.e., the vocabulary), visual language is more continuous in na-
ture and thus cannot be directly modelled in the same closed set fashion as masked language
modelling. Even though for example framing of characters in comics [8, 21] often follow
patterns across comics that can be discretised, the underlying data format (i.e. images) make
pixel-wise reconstruction - in comparison to token-wise reconstruction in MLM - an infea-
sible task as discussed in [19, 35].

We address the challenges that come from the open set nature of visual language by
casting it as a retrieval task. For the panel retrieval task we construct a collection of “candi-
date” panels. These panels are selected from the training set based on a predefined sampling
method. With these candidates, the sequence encoder is not only optimised minimise the
distance between the output embedding at the [MASK] position and the masked input token;
it is also honed to maximise the distance from all incorrect candidate panel embeddings.
This configuration allows us to optimise the sequence encoder by learning to select the cor-
rect panel. The probability assigned by the sequence encoder for an individual candidate is
formulated as:

ŷi =
exp f (x,ci)

∑c∈C exp f (x,c)
. (1)
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Here, f (x,c) denotes a distance metric used to gauge the similarity between two embeddings.
x represents the output embedding at the [CLS] token position, and C encompasses the set
of candidate tokens including the authentic masked token. When expanded in the batch di-
mension, each x is paired with a unique C constructed according to the candidate sampling
strategy. In essence, the optimisation objective for the panel retrieval task follows the prin-
cipals of Noise-Contrastive Estimation loss [25]. Employing this formulation, the sequence
encoder is optimised using the cross entropy loss, where the ground truth label aligns with
the index of the masked input token within the candidate set.

3.2 Candidate Sampling

The candidate sampling strategy intricately shapes the embedding space of the panel se-
quence encoder. Consequently, we propose four sampling strategies: 1) Random sampling:
Candidates are randomly selected from the training dataset without any specific criteria.
Each panel in the entire dataset has an equal probability of being selected as candidate 2)
Pixel-intensity based sampling: Candidate panels are chosen within a range of similar
pixel-value intensities as the masked panel, based on histogram bins. 3) Panel shape based
sampling: Candidates are selected within a range of comparable panel shapes, defined by
the height-to-width ratio, akin to the masked panel. 4) Same comic sampling: Candidates
are exclusively sourced from within the same comic as the input sequence. Crucially, all
properties used in these sampling strategies do not require any annotation.

For each strategy two variants exist: a pure sampling strategy and a mixed strategy. For
the pure variants, panels are only sampled according to criteria described, while in the mixed
variant half of the panels are sampled according to the criteria and the other half are sampled
completely randomly. In each of these strategies the true target panel is always included in
the set of candidate panels.

4 Experiments

Our experiments involve comparison of our method with various methods on two evaluation
tasks: training a linear classifier using learned representations for a specific classification
task and panel panel retrieval. We compare our method to the following existing works:
1) supervised ResNet-50 [18] trained to perform only style classification, 2) OpenCLIP [7]
trained on the DataComp-1B [17] dataset, 3) DINO [6] and DINOv2 [27] trained on Ima-
geNet [13] and 4) DINO trained on the COMICS [23] first, and then on the TINTIN corpus
[5]. The OpenCLIP, DINO and DINOv2 methods are also evaluated in a "Pooled" variant,
where the features of neighbouring panels surrounding the target panel are mean-pooled to
obtain a contextualised representation.

4.1 Data

For our experiments we use two datasets, the COMICS dataset [23] and the TINTIN corpus
[5]. The COMICS dataset consists of 1.2 million panel images and features American comics
from the golden age (i.e., 1940s and 1950s). We use the COMICS dataset as a pre-training
starting point due to the large quantity of available data within the domain of comics, despite
the its larger uniformity in comic style.
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The TINTIN Corpus features more diversity, with over 1,000 comics from over 144
countries/territories, and spanning more than 77,000 panels. The TINTIN Corpus is also ac-
companied by various types of comic-level annotations such as style, format and genre. For
the style attribute, the majority class covers 24.5% of a total of 13 classes with classes such
as “Manga” “Superhero” and “Cartoon”. Format contains classes such as “Comic book”,
“Webcomic”, and “Graphic Novel” with a total of 8 classes and the majority class covering
31.2%. Lastly, the genre attribute contains a total of 91 classes such as “Supernatural”, “Ac-
tion”, and “Political commentary”, with the majority class spanning 17.4%. All quantitative
evaluation of our approach is performed on the TINTIN Corpus, as it encapsulates more var-
ied data and provides annotations as ground truth information. The TINTIN Corpus is split
into an 80% training split, a 10% validation split and a 10% test split for evaluation.

4.2 Experimental Setup

We use DINO-trained [6] ViT [15] features for the individual panel representations that
serve as input tokens for the sequence encoder. To explore the influence of the backbone
we experiment with variations of training the ViT feature extractor on different datasets,
and with different ViT settings. For the main experiments the backbone - pre-trained on
ImageNet - is first fine-tuned on the COMICS dataset, then fine-tuned on the TINTIN corpus.

All models are optimised using the AdamW optimiser [24], with batch size 256 and
learning rate 0.0001 for 50 epochs. Unless specified otherwise, we sample 64 candidate pan-
els during training. The architecture of the panel sequence encoder consists of four attention
heads and four transformer encoder layers. Each layer has a dropout probability of 0.4. The
input embedding size is 384, and the output embedding size is 768. We found a sequence
length of 5 (two panels surrounding the masked panel on both sides) to be optimal during
hyperparameter optimisation.

Method ViT Style Format Genre

Fully Supervised
ResNet-50 [18] - 85.6 53.2 47.7
ResNet-50 Pooled - 87.3 56.1 49.8

Linear Fine-tuned
OpenCLIP [7] B/16 35.6 38.1 25.4
DINO [6] S/16 34.8 37.7 23.5
DINOv2 [27] S/14 33.4 36.6 21.7
OpenCLIP Pooled B/16 36.2 38.4 26.0
DINO Pooled S/16 35.4 38.2 23.9
DINOv2 Pooled S/14 34.0 36.7 22.3

Fully Fine-tuned
DINO B/16 54.8 51.4 42.6
DINO Pooled B/16 56.2 54.8 43.6
ASTERX (ours) B/16 65.6 63.2 51.2

Table 1: Linear classification results on various attributes of the TINTIN Corpus [5]. The
ResNet-50 [18] model is trained for style classification, the models in the Not Fine-tuned
section are trained on DataComp-1B [17] and ImageNet [13]. The methods in the Fully
Fine-tuned section are first fine-tuned on the COMICS dataset [23] and then Fine-tuned on
the TINTIN Corpus.

Citation
Citation
{Caron, Touvron, Misra, Jegou, Mairal, Bojanowski, and Joulin} 2021

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Loshchilov and Hutter} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{Cherti, Beaumont, Wightman, Wortsman, Ilharco, Gordon, Schuhmann, Schmidt, and Jitsev} 2022

Citation
Citation
{Caron, Touvron, Misra, Jegou, Mairal, Bojanowski, and Joulin} 2021

Citation
Citation
{Oquab, Darcet, Moutakanni, Vo, Szafraniec, Khalidov, Fernandez, Haziza, Massa, El-Nouby, Assran, Ballas, Galuba, Howes, Huang, Li, Misra, Rabbat, Sharma, Synnaeve, Xu, Jegou, Mairal, Labatut, Joulin, and Bojanowski} 2024

Citation
Citation
{Cardoso and Cohn} 2022

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{Gadre, Ilharco, Fang, Hayase, Smyrnis, Nguyen, Marten, Wortsman, Ghosh, Zhang, Orgad, Entezari, Daras, Pratt, Ramanujan, Bitton, Marathe, Mussmann, Vencu, Cherti, Krishna, Koh, Saukh, Ratner, Song, Hajishirzi, Farhadi, Beaumont, Oh, Dimakis, Jitsev, Carmon, Shankar, and Schmidt} 2023

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Iyyer, Manjunatha, Guha, Vyas, Boyd{-}Graber, III, and Davis} 2016



S. TITARSOLEJ, N. COHN, N. VAN NOORD: DRAWING INSIGHTS 7

Method ViT R@1 R@5 R@10

Fully Supervised
ResNet-50 [18] Pooled - 0.1 0.1 0.2

Not Fine-tuned
OpenCLIP Pooled [7] B/16 0.5 4.5 15.6
DINO [6] Pooled S/16 0.1 0.5 8.1
DINOv2 [27] Pooled S/14 0.1 0.4 7.6

Fully Fine-tuned
DINO Pooled B/16 1.5 19.7 37.1
ASTERX (ours) B/16 15.7 72.3 89.6

Table 2: Panel retrieval performance on the TINTIN Corpus [5]. The ResNet-50 [18] model
is trained for style classification, the models in the Not Fine-tuned section are trained on
DataComp-1B [17] and ImageNet [13]. The methods in the Fully Fine-tuned section are
first fine-tuned on the COMICS dataset [23] and then Fine-tuned on the TINTIN Corpus.

4.3 Linear Fine-tuning

We follow a common approach for quantitative evaluation of self-supervised training meth-
ods. This approach involves training a linear classifier on the feature space derived from
the self-supervised model for a specific classification task. In our configuration, we leverage
diverse comic-level annotations extracted from the TINTIN Corpus. Specifically, we employ
style, format, and genre annotations to train a linear classifier. Subsequently, this classifier’s
performance is evaluated based on classification accuracy, which provides insight into how
well the feature space captures specific information.

For this analysis we compare models in three different settings: (1) Fully Supervised,
here the ResNet-50 models are pre-trained for Style and then fine-tuned on Format and
Genre. This model is only pre-trained on Style classification, as the expected results when
pre-training on the other two aspects would be similar to this setting. (2) Linear Fine-tuned,
which utilises pre-trained backbone on image datasets, and a linear classifier that is fine-
tuned for each classification task. OpenCLIP is pre-trained on DataComp-1B, and DINO
and DINOv2 are pre-trained on ImageNet. In (3) the Fully Fine-tuned section all meth-
ods are first pre-trained on the COMICS dataset, and then finonesidee-tuned on the TINTIN
Corpus.

Table 1 shows the classification performance of a linear classifier trained to classify three
aspects of a comic in the TINTIN Corpus using the features of various methods. The ResNet-
50 trained to classify style outperforms all other methods for style classification, yet general-
izes poorly to format and genre. Our method outperforms all unsupervised methods, as well
as the ResNet-50 on format and genre classification, indicating that supervised pre-training
does not result in a model that generalises well.

4.4 Panel Retrieval

To further evaluate our method, we pose a retrieval task that aims to retrieve a missing panel
within a sequence. To determine how well the model handles large diversity in style and
content we use the entire test set, consisting of approximately 7.700 panel images, as the
pool of candidate panels. We compute Recall@K across different values of k to gauge the
retrieval performance, and thus the ability of the model to encode contextual information
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Linear Classifier ↑ Retrieval ↑
Method Style Format Genre R@1 R@5 R@10

Random 56.8 55.0 43.7 2.3 45.5 60.0
Pure Sampling
Intensity 57.9 56.8 45.4 4.1 52.7 67.9
Ratio 57.8 57.0 45.7 3.6 51.2 67.5
Comic 60.9 59.5 47.0 4.5 51.6 68.7

Mixed Sampling
Intensity + Random 59.0 58.2 45.9 11.3 67.2 82.6
Ratio + Random 59.3 58.6 46.4 11.5 67.1 82.9
Comic + Random 63.8 62.5 47.6 12.3 68.8 84.2

Table 3: Classification and retrieval performance of different candidate sampling strategies.
All mixed sampling strategies outperform pure sampling strategies, and the mixed comic
sampling strategy performs best overall.

within panel sequences.
The panel retrieval performance of the compared methods are shown in Table 2. Across

the board we see that this is a highly challenging task. The ResNet-50 model that has been
trained in a supervised manner for style classification performs poorly in this retrieval setting,
failing to generalise to retrieval. Similarly, the pre-trained OpenCLIP and DINO backbones
do not perform well, with OpenCLIP outperforming DINO and DINOv2, which may pre-
sumably be due to the the presence of comic(-like) images in the larger pre-training set.
Fine-tuning DINO on comic data boost the performance somewhat, but presumably more
data is required to obtain good performance. Comparatively, our method performs notably
better, thereby showcasing increased contextual understanding of panels.

Comparing the retrieval performance in Table 2 to the classification performance in Table
1, there is an obvious gap in the performance of the ResNet-50 where the strong classification
performance does not translate to retrieval performance. This gap showcases the reality of
the generalisability of features learned with supervision, as good classification performance
does not guarantee good retrieval performance. Comparing the retrieval performance with
the classification performance for the unsupervised methods, we observe much more balance
in performance between these varied tasks, indicating that more general representations are
learned.

4.5 Ablations

Figure 3: Retrieval performance of
our method against the number of
candidates sampled during training.

We perform three ablations to increase understand-
ing of our method. First, Table 3 demonstrates both
the linear classifier performance and the retrieval per-
formance of our method trained using various candi-
date sampling strategies. All mixed sampling strate-
gies outperform the pure sampling counterpart, in-
dicating that a diverse mix of sampling candidates
is beneficial in all evaluation aspects. Furthermore,
in both mixed and pure sampling categories sam-
pling candidates from the same comic outperforms
the other sampling strategies. The fully random sam-
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Backbone ASTERX R@1 R@5 R@10
COMICS [23] COMICS 0.3 13.8 32.4
COMICS TINTIN [5] 0.6 29.3 54.7
COMICS → TINTIN TINTIN 12.3 68.8 84.2
TINTIN TINTIN 10.8 65.3 79.7

Table 4: Comparison of the retrieval performance for the backbone and ASTERX trained on
COMICS [23] and/or TINTIN [5], and subsequently evaluated on COMICS or TINTIN to
evaluate cross-dataset performance. We observe that cross-dataset pre-training works best.

pling strategy is outperformed by all other sampling strategies.
Secondly, Table 4 provides insight into the generalisability over the data domain. Three

configurations of fine-tuning both the feature extraction backbone and the sequence encoder
on different datasets are shown. All retrieval evaluation results are on the TINTIN Corpus
validation set. Unsurprisingly, fine-tuning both models on the target dataset results in the
best performance. However, only training both models on the COMICS dataset already
approaches similar performance of DINO trained on the target dataset (as in Table 2).

Finally, Figure 3 displays the evaluation retrieval performance of our method based on
the number of candidates used during training. The graph clearly depicts a stark increase in
performance between 0 and 50 candidates, and flattens beyond 50 candidates, indicating an
optimal value around 64 candidates.

4.6 Qualitative Results

In an effort to form a qualitative understanding of the learned representations of our method
in comparison to other methods, two retrieval results are presented in Figure 4. In both cases,
the original comic page with the masked panel of interest are shown, as well as retrieval
results from ASTERX (ours), DINO and the supervised ResNet-50. In both cases only
ASTERX retrieved the correct target panel. In the left case, DINO retrieved a panel from the
same comic, in which one of the main characters of this comic is portrayed. The supervised
ResNet-50 retrieves a visually similar panel, but is unable to retrieve a panel from the correct

(a) ASTERX

(b) DINO (c) R50

(d) ASTERX

(e) DINO

(f) R50

Figure 4: Two examples of retrieval results of our method (ASTERX) compared to a super-
vised ResNet-50 [18] and the unsupervised DINO [6] method. In both cases our method is
able to retrieve the correct panel while both other methods are not.
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ASTERX DINO

(a) The Bluecoats

ASTERX DINO

(b) Suske en Wiske

Figure 5: t-SNE [33] projections of ASTERX features in comparison to t-SNE projections
of DINO [6] features for two comics.

comic. On the right all results are close in visual style, but DINO returns a panel from
a different edition from the same comic series, whereas ResNet-50 selects a panel from a
different series altogether. Interestingly, all three results are approximately the right shape.

Figure 5 displays the difference between ASTERX and DINO in terms of feature space
organisation. Two examples are shown in which all panels of two comics are encoded and
then projected using into 2D space using T-SNE [33]. Each example displays how ASTERX
clearly encapsulates the sequential nature of panels, while DINO organises panels without
regard for panel order.

5 Conclusion
In this work we introduced ASTERX, a novel method for learning representations for panels
in comics, while capturing the sequential nature of comics. We showed through several
experiments how this learning strategy specifically designed for comics outperforms baseline
methods that do not take into account their sequential nature. Crucially, we demonstrate the
feasibility of self-supervised fine-tuning on domains which are not as data rich by leveraging
domain-specific aspects. This allows us to present a strong feature basis that enables diverse
cultural analysis of comics.
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