3D Point Cloud Network Pruning: When Some Weights Do not Matter
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KE Applying LTH instead of traditional prunimgthods.
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2. High Dimensionality: Irregular spatial arrangements, leading to
larger Input sizes and more complex featoepresentations.

Figure3: Impact of global pruning on Convolutional and FC layers
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Comparison With Less Parametric Models
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Table2: Comparative analysis of the performance between existing less parametric
models and highly sparse subnetworks extracted from over-parameterized models.
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Key Findings from 3D PCNN pruning
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1. Global pruning methods are more effective in identifying winning

tickets at extreme sparsity levels.

g) PointNet - ShapeNetCore h) DGCNN - ShapeNetCore 1) POintCNN - ShapeNetCore

< 80- > ‘* 1 2. Only 1% of the highest magnitude weights can produce
95 . = i M reasonable performance.

% 75 - 75 - = 3. The weights of the FC layers are less critical for overall
< 40° 70 - - performance than the Conv layers.

4. The analysis underscores the importance of convolutional layers
for feature extraction, while fully connected layers contribute
significantly to model size without impacting performance.

5. Experiment findings prioritize the preservation of convolutional
layers while potentially eliminating or significantly compressing
fully connected layers to develop more efficient architectures in
the future.
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Figure2: Performance of lottery tickets(sub-networks) for 3D shape classification

i. Key existence of highly sparse subnetworks comparable or even superior
accuracy to the original dense model.

ii. The sparse network achieved from global one-shot or IMP pruning maintains
a high accuracy across various PCNN models and datasets.

ili. remarkably high pruning rates of up to 99%




