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Abstract

The 6D object pose estimation technique provides accurate and rich coordinate in-
formation for robots to grasp target objects, while implementing the algorithms of this
technique in industry often requires consideration of smaller cost loss. In this paper, we
propose STPose, a transformer-based pose estimation network using only RGB images
as input. Our network is based on PoET and proposes to reduce the computational param-
eters of the model with convergence efficiency by introducing a sparse attention method
and an encoder cross-layer connection method. We also propose a system that enables
easy and automatic implementation of labeled pose estimation datasets, since no research
has been done to apply this technique to the power environment. Using this system, we
produce a pose estimation dataset, the RCV dataset, targeting power device tools.STPose
provides the best results among the currently studied algorithms on the RCV dataset
and outperforms PoET (RGB-input-only Sota method) by 2.4% on the difficult YCB-V
dataset. We also conduct an experimental analysis of the RCV dataset’s features and dif-
ficulties. The project is available for public use at https://github.com/Agatha7k/STPose.

1 Introduction

With the advent of embodied intelligence and its subsequent growth, a growing number of re-
searchers have expressed a strong interest in robot operation via autonomous planning[9, 16].
Among them, 6D pose estimation is a technology required to realize robot grasping opera-
tion, and robot grasping realization is an inevitable aspect of robot autonomous planning
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Figure 1: Overall block diagram of the principle of automatic labeling system: integrates
front-end visual odometry and back-end nonlinear optimization.

operation. Moreover, researchers now have the chance to use deep learning for 6D loca-
tion estimation of objects thanks to the ongoing development of deep learning-based ap-
proaches. Deep learning-based 6D pose estimation algorithms[17, 20, 28, 29, 31] exhibit
greater applicability, robustness, and accuracy when compared to classical methods[8, 23].
The drawback of existing deep learning methods is that they can only improve bit-pose esti-
mation accuracy by requiring a large number of annotated datasets. The difficulty of creating
large-scale datasets is incredibly high since data annotation is intricate and time-consuming.
Furthermore, the majority of the current datasets[5, 6, 13, 14] lack relevance to the elec-
tric power scenarios and application environments for power operation, belt power opera-
tion, and other scenarios of bit pose estimation dataset. These datasets primarily consist
of objects commonly found in retail packages or household goods, such as the Open X-
Embodiment dataset[24], which boasts a very large sample size and encompasses a wide
range of objects proposed by the Open X-Embodiment Collaboration. There are currently
several advanced techniques available for annotating datasets: Liu[21] et al. employed a set
of task-specific model acquisition tools, but in order to complete this task, they had to rely on
expensive experimental tools, which presented a challenge because they were unable to sam-
ple the dataset simultaneously and the expensive tools could not utilise all of the available
time. We have developed a nearly fully automated approach for annotating datasets based
on camera trajectory estimation as a solution to the aforementioned issues. This annotation
tool is straightforward, quick, and inexpensive. A computer and an RGBD camera are the
only capital and labor expenses required for this technology, which can significantly lessen
annotators’ workloads and increase the accuracy and efficiency of annotations. Using this
combination of tools, we created the RCV dataset, which is the first BOP dataset for electric
power background.

We also propose a 6D pose estimation network with only RGB images as inputs, taking
into account the cost overhead under industrial conditions. We compare some common 6D
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object pose estimation algorithms on this dataset, like FFB6D[11] and densefusion[5], and
perform benchmark tests, which demonstrate that our algorithms are able to achieve RGB-
only input sota effect; some of the current state-of-the-art pose estimation algorithms on the
RCV dataset achieve much lower scores in poor conditions than in normal conditions, and
there is plenty of room for improvement; these results suggest that the dataset created by our
set of annotation tools is appropriate to serve as a benchmark dataset for the pose estimation
task.

Our primary research outcomes are listed below: (1) Our proposal is an annotation
pipeline that utilizes camera trajectory estimation and includes both automatic and man-
ual annotation techniques. (2) We produce a 6D pose estimation dataset applied to power
scenarios using an automated labeling system.(3) We propose a transformer-based 6D pose
estimation algorithm for RGB image inputs only and perform evaluation experiments on the
YCB-V dataset and the RCV dataset.

2 Related Work

2.1 Labeling methods

6D pose estimate datasets are becoming more and more popular as technology advances[19,
27]. Six-degree-of-freedom pose is traditionally annotated manually, which is a time-consuming
and error-pronemethod that involves matching a 3D object model with its representational
properties in a 2D real image. The potential for automated 6D pose annotation is expanding
along with the automation level. To create and annotate datasets, for instance, Baca[2] et
al. created an almost entirely automated annotation technique. By combining evaluation
measures and existing datasets, Hoden et al. created the Benchmarking Challenge for Six
Degree of Freedom Pose Estimation Task[15] (BOP). Our approach has more advantages
over Baca et al.’s almost fully automated approach to dataset generation and annotation, as
well as Yuan[33] et al.’s motion sensor-based reconstruction of the object model. Specifi-
cally, we avoid the need for excessively complicated capturing devices and data acquisition
tools, and the annotation process can be completed with just a computer and a D435i camera,
which makes our annotation system more practical and effective.

2.2 Datasets

The two primary contexts covered by the datasets in the field of 6D pose estimation are home
and industrial. The majority of the datasets in the home environment center on commonplace
items or children’s toys. For instance, the Linemod dataset[12] , which includes 13 low-
textured objects in 13 video sequences without the use of generated images, was chosen for
the home office setting. The difficulty is raised by the Linemod-Occluded dataset[13] , which
includes additional difficulties such as truncation, object occlusion, and lighting fluctuations.
On the other hand, one of the most difficult datasets currently accessible is the YCB-Video
dataset[32], which is built in an office setting and has 92 video sequences and 21 items that
also have illumination and occlusion problems. Thirty industrially important low-textured
items, some of which are composites of other things and show some symmetry and shape
and size similarity, are included in the T-LESS dataset[6].

One of the reasons we started our work was because we discovered that there was no pose
estimate dataset available for the electrical industrial domain. The RCV dataset is designed to
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be trained and tested in a variety of lighting and occlusion scenarios, just like these traditional
public datasets. Simultaneously, the RCV dataset must solve the simultaneous hurdles of
classifying things with more reflective metals in a given viewing angle and detecting the
presence of considerable occlusion for objects with varied volume sizes.

2.3 Methods

Unlike the previous models for pose estimation[11, 25, 28, 32], Trans6D[34] was the first
study to use a Transformer model in the field of 6D pose estimation. The Transformer model
was created in both pure and hybrid forms, and it was enhanced with a graphical convolu-
tional network for the purpose of extracting local point cloud features and geometric sensing.
These additions effectively imposed constraints on the Transformer model. A Transformer-
based system was proposed by Amini[1] et al. that can regress the 6D pose of several objects
from a single image. By adding translational and rotational heads to DETR[7], they were
able to train the complete network end-to-end[7]. However, because this method relies on
symmetric perceptual loss, it requires 3D models of the objects. In the meantime, PoET[18]
presents a technique that can estimate the translation and rotation of an object in the camera
coordinate system straight from a single RGB image, without the need for any extra data
(such as a depth map, 3D model, or object symmetry information). PoET improves pose
estimate accuracy by retaining the whole picture feature mapping and using the ROI as an
additional input to the Transformer network, in contrast to previous methods that rely on
ROIs for pose estimation.

Our network, which draws inspiration from PoET, incorporates the encoder cross-layer
connection mechanism and sparse attention mechanism while preserving the PoET model’s
deformable convolution mechanism, which guarantees pose estimation accuracy while ac-
celerating convergence and significantly enhancing the model’s training efficiency, leading
to more precise and useful outcomes in power industry scenarios.

3 Materials and Methods

3.1 Select Object Set

In order to enhance robot performance in identifying and grasping during electric power op-
erations, our objective is to establish a benchmark dataset on electric power fixture devices.
As a result, we decided to create this dataset using 16 items that are frequently seen in sce-
narios involving power operations. Taking into account the various physical characteristics
of everyday and industrial devices, we selected two special cases of devices that have the
same exterior texture and shape but different sizes (such as a high-voltage cable clamp or a
vise with varying sizes) and the same shape and size but different exterior textures (such as
diagonal jaw pliers with different colors). In these cases, it is challenging to accurately dif-
ferentiate objects categories relying solely on the algorithms to accurately distinguish object
classes and accurately estimate their poses. In order to properly take use of the complemen-
tarity between these two forms of information, the RCV dataset requires algorithms that can
effectively fuse the geometric information with the texture information.
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3.2 Making 3D physical models
After conducting numerous device scanning experiments, we determined that the EinScan
Pro 2X 2020 handheld 3D scanner had the following restrictions and used it to create 3D
models of the objects: Some very large devices cannot be scanned since the scanner cannot
handle devices with lengths more than 500 cm. After scanning with this scanner, we have
16-ply files. Object visibility was 94.26% on average, with a wide range of orientations,
and object distances ranging from 33.2 to 121.25 cm, with an average of 70.29 cm. There
were nine things in total that were symmetrical and seven that were not.A schematic of every
device in the RCV dataset is presented in Figure 2.

3.3 Capturing dataset images
We have an Intel Realsense d435i RGBD camera that we used to take RGB and depth pic-
tures. The camera has a resolution of 1280*720 and can take both RGB and depth pic-
tures.We separated the power devices into 80 training sets and 20 test sets, then used camera
distances ranging from 0.5m to 1m to capture the device images under various lighting and
occlusion situations. Using five different lighting conditions:(1) normal light with sparse
distribution of devices (2) one-sided strong light exposure with sparse distribution of devices
(3) dark light with sparse distribution of devices,(4) normal light with dense distribution of
devices and (5) dark light with dense distribution of devices—each training set and test set
was photographed. The test set only recorded 600 frames of video sequences, whereas each
training set recorded 1800 frames in each condition. In the end, we were able to gather
144000 frames of video sequences, with 12,000 frames for the test set and 14,000 frames for
the training set, where every device was allocated equally.

Figure 2: Demonstration of RCV dataset devices

3.4 Automated labeling of datasets
Using a set of video sequences as a unit, we apply the AruCo code fusion SIFT (Scale-
invariant feature transform) algorithm[22] to extract the sparse feature points in the image.
This involves fusing the local features extracted by the SIFT algorithm with the position and
pose information of the AruCo code to create an all-encompassing feature descriptor. We
calculate the point cloud surface overlap rate when generating the point cloud features, and
use that information to filter and remove invisible objects in order to improve the accuracy
of feature point matching. This method enhances the algorithm’s robustness and accuracy
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by combining local and global data. After that, feature point matching is carried out in
accordance with the features that have been described to obtain matching points. Lastly, the
3D to 3D relationship between feature points is used to solve the camera trajectory by the
Iterative Closest Point (ICP) algorithm[3], which yields the transformation matrix between
various camera coordinate systems. The corresponding camera pose matrices for each frame
number are indicated as ai, i = 1,2,3, . . . When i = 1s, it is the first frame of this video
sequence. From equation (1), the i+ 1th frame position is calculated from the ith frame
camera position.

atarget = R∗asource + t (1)

In equation (1), atarget is the camera pose matrix of the target frame, asource is the camera
pose matrix of the current frame, R is the rotation matrix, and t is the translation matrix.
By multiplying all of the transformation matrices from the first frame to the target num-
ber of frames by the pose of the first frame, this visual odometry method must determine
the number of non-adjacent frames. This process often results in a loss of accuracy during
multiplication, which can lead to errors. We present two back-end techniques, Pose Graph
Optimization (PGO) and Bundle Adjustment (BA), to eliminate the aforementioned faults.
While BA Optimization makes optimal adjustments to the camera pose with the spatial lo-
cations of feature points and eventually converges to the camera optical center to improve
the accuracy of the camera pose estimation, Pose Graph Optimization can act on non-close
frames to record all the sensory information accumulated during camera motion in a node-
edge building manner to achieve global optimization of the pose. By comparing the projected
value of the pixel coordinates with the measured value in terms of the pose error, or the re-
duced reprojection error, bit position optimization is carried out by utilizing the error. In
terms of the metric, it can be stated as follows:

min
Ri,ti

∑
i, j

σi j‖ui j− vi j‖2 (2)

Among them, Ri and ti represent the rotation matrix and translation matrix of the camera
frame Pi, ui j represents the coordinates of the map point X j projected onto the camera frame
Pi, and vi j represents the coordinates of the map point X j reprojected onto the camera frame
Pi. When the map point X j is projected in the camera frame Pi, σi j = 1; otherwise, σi j = 0.

In Figure 1, the green frame portion is shown as follows: the pose transformation matrix
with respect to the source frames is calculated for each target frame in the target frame list
once a list of source and target frames has been chosen, and the odometry is updated to
constantly optimize the pose map. During this time, BA optimization also helps to lower
the error. The automatic annotation principle, which the purple frame portion is shown as
follows: enter the green frame portion and continue in this manner until you have traversed
every target frame list for this source frame. This process is done after selecting the list of
target frames based on the chosen source frame ID.

3.5 Proposed STPose algorithmic framework
We present a deep learning-based object 6D pose estimation algorithm that can reliably and
accurately estimate the target object’s rotation and translation state in complex environmental
conditions. It also exhibits strong robustness to changes in ambient illumination and can
reliably and accurately estimate the target object’s pose in situations where the object is
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severely occlusion and has weakly textured or untextured features on its surface. Impact.
Subsequently, we will talk about the network’s overall architecture and the implementation’s
unique enhancement.

The network’s general layout is depicted in Figure 3. Our network is primarily divided
into three sections:(1) Backbone feature extraction network: the input picture passes through
this portion of the network to obtain the multi-scale feature map and predicted bounding
box; this portion of the network can be substituted with any object target detector.(2) The
transformer network, which is part of the network, is based on the PoET and introduces
deformable convolution, encoder token sparsification, and encoder cross-layer connection
mechanism. The output embedding is fed into the decoder along with the camera center
coordinate information and the object query embedding filtered by the scoring network, so
that the decoder’s output embedding includes both the local and global information; this is
done after receiving the multiscale features and bounding box obtained from the previous
part of the network and feeding this information to the encoder.(3) Translation head and
rotation head networks: Using the data from the previous network, this portion of the network
enables us to estimate various bit pose information and category information of multiple
objects at once, resulting in precise 6D bit pose estimation of objects.

Figure 3: Overview diagram of the STPose algorithm

3.5.1 Transformer attention sparsification

The attention sparsification module of our STPose network is shown in the "scoring network"
section of Figure 3. The feature map is x before entering the scoring network, and the scoring
network is assumed to be s, which serves for measuring the significance of the tokens in x.
We define a top-k% region Xk which contains the tokens in the top k% of significance. The
token of the encoder i is updated as follows:

x j
i =

 LN
(

FFN
(

z j
i

)
+ z j

i

)
j ∈ Xk, where z j

i = LN
(

DA
(

x j
i−1,xi−1

)
+x j

i−1

)
x j

i−1

)
j /∈ Xk

(3)

where FFN is the feed-forward network, LN is layer normalization, and DA is de-
formable attention. To ensure that the information is not lost, lower the computational cost,
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and achieve the effect of encoder token sparsification, the information is passed to the token
in the region even if it is not in the designated region.

3.5.2 Encoder cross-layer connection

Jump connection, such as the usage of long program connectivity in U-Net[26] and short
program connectivity in ResNet[10], is a popular technique for enhancing the performance
of deep learning networks. On the other hand, short-program jump connections may result
in information loss due to poor memory, while long-program jump connections may result
in inadequate fusion information representation because of large disparities in information
features before and after. As a result, we decide on a medium-program jump link.

The encoder cross-layer connection graph is also displayed in Figure 3. The fusion
information of encoders ai and ai+2 is the input information of encoder ai+3, assuming that
the i-th encoder is ai. In other words, the combination of the output data from encoder ai and
encoder ai+2 yields all of the encoder information, except the first and second encoder.

4 EXPERIMENTS
To evaluate the performance of our RCV dataset and validate our algorithm STPose, we
run tests of STPose on the YCB-V dataset and experiment with several 6D pose estimation
strategies on the RCV dataset. The RCV dataset comprises 3,505 frames from the training
set divided into the validation set, 12,000 frames from the test set, and 144,000 frames from
the training set. It is divided into different occlusion and illumination settings for group
testing.

Figure 4: Figure 4: Qualitative results of STPose’s predictions of relative 6D poses for the
YCB-V dataset(Estimated poses in the top row, labeled poses in the bottom row)

4.1 Evaluation metrics
We use two metrics, Average Distance (ADD) and Average Distance to Nearest Point (ADD-
S), to assess the bit pose estimation accuracy. where symmetric items are evaluated using
ADD-S and asymmetric objects using ADD.

4.2 Evaluation on YCB-V Dataset
Our method optimizes the network parameters during training by using the Adam optimizer,
which is based on the Pyorch framework implementation. Every experiment in this paper
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is performed on a desktop computer that has two NVIDIA RTX 3090 GPUs and an Intel®
Xeon® E5-2680 v4 CPU.

Method SilhoNet[4] MCN[26] T6D[1] GDR-Net[30] DeepIM[20] PoET[18] Our STPose
3D Model Input + Sym 2D Loss PnP IR 2D 2D
002 master chef can 83.6 91.2 91.9 96.6 93.1 92.9 91.8
003 cracker box 88.4 78.5 86.6 84.9 91 90.4 79.1
004 sugar box 88.8 85.1 90.3 98.3 96.2 94.5 100
005 tomato soup can 89.4 93.3 88.9 96.1 92.4 94 93.4
006 mustard bottle 91 91.9 94.7 99.5 95.1 94.8 99.7
007 tuna fish can 89.9 95.2 92.2 95.1 96.1 94 100
008 pudding box 89.1 84.9 85.1 94.8 90.7 93.8 100
009 gelatin box 94.6 92.1 86.9 95.3 94.3 92.7 99.8
010 potted meat can 84.8 90.8 83.5 82.9 86.4 94.1 93.5
011 banana 88.7 70 93.8 96 72.3 94.3 61
019 pitcher base 91.8 91.1 92.3 98.8 94.6 94.3 92.4
021 bleach cleanser 72 86.8 83 94.4 90.3 92.6 99.5
024 bowl 72.5 85 91.6 84 81.4 92.1 99.1
025 mug 92.1 91.9 89.8 96.9 91.3 94.1 100
035 power drill 82.9 87.2 88.8 91.9 92.3 94.3 93.8
036 wood block 79.2 87.2 90.7 77.3 81.9 92 100
037 scissors 78.3 80.2 83 68.4 75.4 92.5 99.8
040 large marker 83.1 66.4 74.9 87.4 86.2 81.6 96.3
051 large clamp 84.5 86.5 78.3 69.3 74.3 95.7 100
052 extra large clamp 88.4 79.5 54.7 73.6 73.2 96 100
061 foam brick 88.4 79.2 89.9 90.4 81.9 89.7 100
MEAN 85.8 86.9 86.2 89.1 88.1 92.8 95.2

Table 1: Quantitative evaluation results using the ADD-(S) metric on the YCB-V dataset
for the entire test set, where data shown in bold are the highest scores among the different
methods.

The YCB-V public dataset is used as a benchmark in the tests in this section to compare
our suggested network STPose to other techniques that also only accept RGB inputs. Table
1 presents the evaluation results of STPose and other advanced RGB algorithms on YCB-V.
The findings indicate that the bit-pose estimate accuracy of existing advanced RGB methods
is not as high as our method. In order to decrease the regression prediction of rotations, a
system similar to SilhoNet feeds the network symmetry information of 3D objects. This in-
dicates that STPose has the potent capacity to model the global context of the image because
it incorporates a transformer structure and does not require the input of extra data. As a pose
estimation network that also uses a transformer structure, STPose is also 2.4% higher than
the state-of-the-art (sota) algorithm PoET. One advantage of STPose is that it can reduce
the amount of computation in attention by allowing the encoder token to be sparse. This
is achieved by building a scoring network that chooses keys with strong representativeness,
which lowers the number of keys input into the encoder of transformer number. This greatly
reduces the computational complexity of the attention and can facilitate network conver-
gence.

4.3 Ablation experiments

The ablation experiments are performed on the RCV dataset as a baseline and on the various
mechanisms applied in this paper, and the experimental results obtained are presented in the
following table.

In the above table, model (a) and model (b) are the PoET network and PoET network
with applying deformable convolution mechanism, respectively, and model (c) and model
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Model (a) (b) (c) (d)
DCN 7 3 3 3
TAS 7 7 3 3
ECN 7 7 7 3

Accuracy (%) 86.88 87.29 89.25 89.46
Table 2: Results of ablation experiments. “DCN” denotes deformable convolution, “TAS”
denotes transformer attention sparsification, and “ECN” denotes encoder cross-layer con-
nection.

(d) are the STPose network after incorporating the sparse attention mechanism and after
incorporating the sparse attention mechanism as well as the cross-layer connection mecha-
nism, respectively. As can be seen in Table 2, after incorporating the deformable convolution
mechanism, the pose estimation accuracy of model (b) increases from 86.88% to 87.29%,
which is an improvement of 0.41%, which indicates that the deformable convolution can be
adjusted according to different shapes of objects, and improves the ability to understand the
objects in the complex scene and the pose estimation relative to the traditional convolution;
after incorporating the sparse attention mechanism, the accuracy of pose estimation of model
(c) is improved from 87.29% to 89.25%, which is an improvement of 1.96%, indicating
that the proposal of sparse attention mechanism greatly reduces the complexity of attention
computation in the transformer network, and improves the computational performance and
generalization ability of the STPose network; after adding the cross-layer connectivity mech-
anism, the accuracy of pose estimation of model (d) is improved from 89.25% to 89.46%, an
improvement of 0.21%, which shows that the cross-layer connection mechanism can make
the STPose network information difficult to be lost in the case of reaching at deeper encoder,
making its convergence ability stronger and the pose estimation ability more accurate.

5 CONCLUSION
We create an object pose estimation dataset for power-operated devices, called the RCV
dataset, using an automatic labeling approach for object 6D pose estimation dataset that
only needs to name the first frame of a video sequence. This dataset encourages the use of
object 6D location estimation algorithms in electric power scenes as it is the first publicly
available dataset for electric power devices in this field. And our proposed STPose network
outperforms current RGB methods.The encoder is the focus of our network’s improvement;
in fact, we have also tried to improve the structure of the decoder, such as exchanging the
TRANSFORMER decoder self-attention layer with the cross-attention layer. Finally, we
hope that it can be served as a useful and trustworthy link between computer vision and the
power sector.
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