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Abstract

With the ever-increasing amount of 3D data being captured and processed, multi-
view image compression is essential to various applications, including virtual reality and
3D modeling. Despite the considerable success of learning-based compression models on
single images, limited progress has been made in multi-view image compression. In this
paper, we propose an efficient approach to multi-view image compression by leveraging
the redundant information across different viewpoints without explicitly using warping
operations or camera parameters. Our method builds upon the recent advancements in
Multi-Reference Entropy Models (MEM), which were initially proposed to capture cor-
relations within an image. We extend the MEM models to employ cross-view correla-
tions in addition to within-image correlations. Specifically, we generate latent represen-
tations for each view independently and integrate a cross-view context module within the
entropy model. The estimation of entropy parameters for each view follows an autore-
gressive technique, leveraging correlations with the previous views. We show that adding
this view context module further enhances the compression performance when jointly
trained with the autoencoder. Experimental results demonstrate superior performance
compared to both traditional and learning-based multi-view compression methods.

1 Introduction

The increasing demand for multimedia content generation and consumption creates a press-
ing need for the development of efficient data compression techniques. Multi-view imaging
systems, which capture a scene from various angles, are indispensable for virtual and aug-
mented reality (VR and AR), 3D reconstruction, and surveillance systems. These systems
present considerable challenges in the storage and transmission of very large amounts of
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Figure 1: Overview of VEMIC An encoder network maps the input views to a latent rep-
resentation yk, which is then quantized and entropy-coded. The context module consists of
channel context and spatial context blocks similar to MLIC++ [14] and a novel view-context
block (shown in green). The view-context module learns the cross-view correlations, which
are then used in entropy coding to achieve improved bitrate reductions.

data. Thus, improving compression techniques is crucial for efficiently handling, storing,
and transmitting multi-view image data.

In this paper, we present a learning-based multi-view compression model for a general
multi-camera setup. While significant progress has been made on learning-based single-
view compression [2, 3, 8, 21], multi-view compression has often been overlooked. One
of the main challenges in training multi-view compression models is the unavailability of
large-scale multi-camera datasets. In this work, we mitigate this problem by taking a fine-
tuning approach in which single-view compression models trained on large-scale single-view
datasets are fine-tuned on multi-view data.

While simple fine-tuning can yield good performance gains, these models still operate on
each image independently without leveraging any cross-view information. Since multi-view
images exhibit significant correlations, we postulate that harnessing these correlations can
further enhance the compression performance. We aim to capture these correlations within
the entropy models, which work alongside the autoencoder in conventional learning-based
compression models. The autoencoder encodes the images into latent representations and
reconstructs the images back from these latents. The entropy model enhances compression
efficiency through accurate prediction of the probability distribution of the quantized latent
representations. Advanced entropy models often employ various context modules that cap-
ture the dependencies within the data to estimate the entropy parameters. These context
modules generally focus on identifying and utilizing dependencies found within individual
images. In this work, we focus on improving the context modules for multi-view compres-
sion task by utilizing the information from cross-view features.

We choose the single-view compression model from MLIC++ (Multi-Reference Entropy
Model for Learned Image Compression) [14] as our pretraining network. MLIC++ utilizes
three types of context modules – channel context, local spatial context, and global spatial
context. These modules independently extract the channel and spatial context features from
the latent representations of each image. In addition to these modules, for multi-view com-
pression, we incorporate a view context module that can gather information from different
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views. We illustrate the overall pipeline in Figure 1. Our context module uses an attention-
based framework to autoregressively generate view-based information from the previously
seen views. Specifically, the view context for the current view is generated by attending
to the feature maps from the previous views. The newly added cross-view context module
parameters are learned from scratch, while all previous layers are initialized from MLIC++.

We empirically show that our approach, the View-aware Entropy model for Multi-view
image compression (VEMIC), can yield significant performance gains compared to both
traditional and learning-based multi-view compression techniques. Fine-tuning single-view
compression models can be greatly beneficial, especially in scenarios with limited data avail-
ability, which is common in multi-view image datasets. Furthermore, incorporating multi-
view context modules can further boost the compression performance. In summary, our
contributions are:

• We present a fine-tuning-based strategy for adapting the single-view compression
models for multi-view compression problem.

• To model the multi-view correlations in the context module, we present an autoregres-
sive view-channel context block based on the attention mechanism.

• We empirically show that our approach can yield significant gains in terms of rate-
distortion performance compared to competing approaches on various multi-view datasets.

2 Related Work

2.1 Single Image Compression
Traditional codecs Classical image compression standards, such as JPEG [28] and JPEG
2000 [22], use handcrafted algorithms to reduce the size while preserving the original visual
quality. These methods typically have a three-stage compression pipeline. First, the input
image is transformed to a compact representation, often using discrete cosine (DCT) [1]
or wavelet transforms [32]. The transformed input is then quantized. Finally, the discrete
quantized output is encoded into a bitstream using entropy coders such as Huffman or Arith-
metic coding in a lossless manner. Despite their effectiveness, these techniques have many
limitations. First, the input image is divided into small blocks, which are independently
transformed, thereby introducing block artifacts. Second, each stage is locally optimized,
limiting global performance. Finally, they do not adapt to the specific characteristics of the
input data, often resulting in suboptimal performance.

Learned image codecs Learning-based image compression algorithms have achieved im-
pressive performance [11, 14, 27], often surpassing conventional codecs. Early research in
learned image compression used autoencoder architectures [13] with three basic modules –
encoder, quantizer, and decoder. The encoder network transforms the image into a latent rep-
resentation. This representation is converted into a discrete representation using a quantizer
function, and finally, a decoder reconstructs the image from the discrete latent representa-
tion. All three modules are jointly optimized to minimize the total rate-distortion cost. The
latent representations are further compressed using entropy coding, where frequently occur-
ring patterns are represented with fewer bits and the rare patterns with more bits. Toderici et
al. [27] presented an end-to-end learned image compression method using recurrent neural
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networks that outperforms JPEG. Since then, several improvements have been made to the
encoder/decoder transforms to reduce the correlations in the latent representation.

2.2 Multi-view Image Compression

Conventional multi-view image compression standards [25, 26] are extensions of the video
codecs and are developed to improve compression performance by exploiting the redundan-
cies between different views. These methods utilize motion estimation and disparity estima-
tion techniques to harness the view correlations. However, they only support the YUV420
format and are still developing. These codecs do not match the performance of the single
image codecs that support YUV444 planar or RGB format. On the other hand, most of the
existing learning-based multi-view approaches [9, 17, 19, 30, 31] mainly focus on stereo
images, and extending the stereo-based methods to multi-view images is not trivial.

2.3 Entropy modeling

An entropy model estimates the probability distribution of the quantized latent representa-
tions. To improve the coding efficiency, entropy models learn a prior on the latent represen-
tation, which is used with the entropy coding algorithms to yield a compressed bit stream.
Early works used element-wise independent entropy models to estimate the probability dis-
tribution of the latent representations and independently encoded each element with an arith-
metic coder. Later works used more sophisticated models to explicitly estimate the entropy
using hyperpriors and other parametric models [3, 8, 21]

Balle et al. [3] introduced a hyperprior architecture to improve the entropy model. They
use a conditional Gaussian model parameterized by scale to estimate the entropy parameters
from the hyper-latent representation. The compressed hyper-latent is added as side informa-
tion to the bitstream, allowing the decoder to use the conditional entropy model. The model
is trained end-to-end to jointly optimize the autoencoder, the quantized hyper-latent repre-
sentation, and the conditional entropy model. The Gaussian scale entropy model reduces
the spatial dependencies within the latent representation, thereby improving the compres-
sion performance. Minnen et al. [21] extended the scale model to a Gaussian mixture model,
where both mean and scale parameters are estimated from the entropy model. They demon-
strated the use of conditional means to further reduce the spatial dependencies in the latent
representation. In addition, augmenting the hyperprior model with an autoregressive model
that predicts the latent from their causal context further improved the rate-distortion perfor-
mance. Though the auto-regressive model is effective, it requires the model to sequentially
decode each symbol, which can result in longer decoding times. Minnen et al. [20] proposed
the channel-conditioned auto-regressive models where the latent representation is divided
into slices along the challenge dimension, and the entropy parameters for each slice are con-
ditioned on the latents of the previous slices. Given the effectiveness of the context-adaptive
models, several improvements to the entropy models have been proposed to exploit the con-
text along the spatial dimension [10, 18, 34] and channel dimensions [11, 16]. Most of the
current works exploit the context modules captured within an image. In our work, we exploit
the effect of context captured across multiple viewpoint images of the same scene.
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3 Method

3.1 Overall architecture
The goal of multi-view image compression is to compress a set of images X = {x1,x2, · · ·xV}
of a scene captured from V different viewpoints while preserving their visual quality. In
contrast to single-view image compression networks [3, 11, 14] that operate on each image
independently, we use the multi-view correlations to improve the rate-distortion tradeoff.

In this work, we utilize an autoencoder-based framework for the task of multi-view com-
pression. Specifically, an encoder network transforms each image set {xi}V

i=1 into a set of
latent representations {yi}V

i=1. These latent representations are quantized to {ŷi}V
i=1 in a dif-

ferentiable manner, which is then entropy-coded into a bitstream that is transmitted to the
decoder. The decoder reconstructs the images {x̂i}V

i=1 from this code. The model is trained
in an end-to-end manner to jointly optimize for quality and bitrate reduction.

We build upon the work of MLIC++ [14], which is the state-of-the-art model for sin-
gle image compression. The encoder and the decoder networks are composed of several
convolution-based residual blocks with progressive downsampling/upsampling layers. In
addition, a context-based entropy model, called Multi-reference Entropy Model (MEM), is
learned to estimate the distributions of the latent representations, which are then used in en-
tropy coding. The MEM module captures the local, global, and channel-wise correlations
in the latents. These correlations are then combined with the hyper-prior side information.
Using the estimated parameters of the latents, entropy coding techniques such as arithmetic
coding [23] can perform a lossless compression of the quantized latent representations. An
outline of this framework is illustrated in Figure 1.

In particular, the MEM module employs three types of contexts – channel context, local
spatial context, and global spatial context. The channel-wise context module divides the la-
tent representations ŷi into several slices {ŷ1

i , ŷ
2
i , ŷ

3
i , . . .} along the channel dimension. The

channel context for each slice s is computed using all previous slices ŷ<s
i with a shallow net-

work. Next, for each slice, spatial contexts are computed by partitioning the latents ŷi into
two halves – anchor (ŷs

i,anchor) and non-anchor (ŷs
i,non−anchor), following a checkerboard pat-

tern. The anchor part is context-free, while the context for the non-anchor part ŷs
i,non−anchor

is computed from the anchor part ŷs
i,anchor using an attention block. Finally, the global spatial

context module uses an efficient linear attention layer [24] to capture the global correlations
between the non-anchor part ŷs

i,non−anchor, and the anchor part of the current slice ŷs
i,anchor and

the previous slice ŷs−1
i .

3.2 View Context module
As MLIC++ [14] is designed for single-view image compression, all the context modules
exploit the correlations within the latent representations of a single image. In a multi-view
image framework, additional correlations are present across the latent representations from
different views. We hypothesize that augmenting the view-based correlations in the entropy
model can further reduce the bit rate. To achieve this, we propose a cross-view context
module to capture the dependencies across different viewpoint representations. We use an
autoregressive framework, where the entropy parameters for view v are estimated using the
latent representations of previous views using an attention mechanism. Specifically, the view
context for a slice s of view v (ŷs

v) uses an attention layer where the queries are the previous
slices of the same view ŷ<s

v , the keys are the previous slices of the previous views ŷ<s
<v, and
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Figure 2: View context module. The channel context for a new slice of a current view is
estimated using an attention mechanism that calculates the correlations between the current
view with all previously decoded views. The queries are the features of all previous slices
of the current view (shown in green), the keys are the features of all previous slices from
all previous views (shown in blue and orange), and the values are the features of the current
slice from previous views (shown in pink).

the values are taken from the previous views of the same slice ŷs
<v. This is illustrated in

Figure 2.
Let ŷs

v ∈ Rh×w×c, where h and w represent the spatial dimension and c is the number of
channels. The resultant key matrix K will be of dimension R(v−1)hw×(s−1)c, the query matrix
Q will be Rhw×(s−1)c and the value matrix V will be of dimension R(v−1)hw×c. We also add
view-based positional embeddings to the features before computing the attention matrix.
The attention map represents the similarity between each spatial location of the current view
and the spatial locations of all previous views. Using this attention map, the view context is
obtained as a weighted combination of all previous view features.

3.3 Fine tuning

Training multi-view compression methods are often challenging due to the unavailability
of large-scale multi-camera datasets. To mitigate this, we use pre-trained single-view com-
pression models as initialization and then add our newly introduced view context modules
to the entropy model. We use the publicly available checkpoints from MLIC++ [14] as our
pre-trained model. The newly added view-context modules are randomly initialized, and the
entire model is fine-tuned end-to-end on a multi-view image dataset.

3.4 Training objective

Our model optimizes the rate-distortion objective on multi-view images as:
L= ∑

K
k=1 ∑

V
v=1 λD(xk,v, x̂k,v)+R(ŷk,v)+R(ẑk,v)

The distortion D term represents the image quality metric, such as mean-squared error or
structural similarity term, between the original image x and the reconstructed image x̂. The
rate term R represents the estimated code length or the number of bits used to encode the
latent representation ŷ and the corresponding hyper-latent representation ẑ. K represents
the number of multi-view images, and V represents the number of views in each image. λ

controls the trade-off between the compression rate and the image quality.
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Figure 3: Rate-distortion curve on Holocamera and Wildtrack datasets The plot on
the left shows the rate-distortion curve with the PSNR metric, while the one on the right
shows the curve with the MS-SSIM metric. Our approach, VEMIC, outperforms all prior
approaches, achieving state-of-the-art results.

4 Experiments
Datasets We evaluate our approach on two publicly available multi-view image datasets
– Holocamera [12] and Wildtrack [7]. The Holocamera dataset contains 4032× 3040 reso-
lution volumetric captures of 30 static scenes acquired from 300 different viewpoints. We
use the 240 viewpoints along the four sidewalls of the volumetric capture studio and ignore
the 60 viewpoints from the ceiling. We encode six images at a time, corresponding to the
six camera locations placed vertically, one below the other. This provides structured data
and establishes a spatial relationship across the viewpoints. The Wildtrack dataset consists
of pedestrian surveillance videos of 1920× 1080 resolution captured from seven randomly
placed cameras. Both these multi-view datasets have overlapping field-of-view across view-
points, which leads to view redundancies.

Implementation details Our implementation is based on the publicly available Compres-
sAI [4] library. We initialize our model using the pre-trained checkpoints corresponding to
different λ values provided by MLIC++ [14]. Following the settings from MLIC++ and
CompressAI, we use λ ∈ {67,130,250,483}×10−4 and MSE distortion loss. We train each
model using Adam optimizer [15] with β1 = 0.9 and β2 = 0.999. We use a batch size of 4
and start with a learning rate of 10−4 for both models and on both datasets. On the Holo-
camera dataset, the learning rate reduces to 10−5 at 100 epochs, 10−6 at 180 epochs, and
10−7 at 220 epochs, and the network is trained for 250 epochs. On the Wildtrack dataset,
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Method Holocamera Wildtrack

PSNR SSIM PSNR SSIM

JPEG2000 [22] 201.86 % 228.15 % 122.39 % 127.22 %
LDMIC [33] -14.59 % -48.76 % -30.91 % -49.37 %
MLIC++ [14] -21.26 % -30.56 % -31.04 % -41.25 %
VEMIC (Ours) -62.79 % -68.21 % -50.51 % -62.06 %

Table 1: BD-rate comparison. The table shows the BD-rate values with BPG [5] as the
baseline. VEMIC outperforms prior approaches on both Holocamera and Wildtrack datasets.

Figure 4: Qualitative results on Holocamera dataset. The two rows represent the scene
captured from two different viewpoints. The left column shows the uncompressed ground-
truth image, the middle column shows the reconstructions from LDMIC, and the right shows
the reconstructions from our VEMIC. Our approach achieves very high reconstruction qual-
ity while requiring much lower bits per pixel than LDMIC [33].

the learning rate reduces to 10−5 at 60 epochs, 10−6 at 84 epochs, and 10−7 at 110 epochs,
and the network is trained for 140 epochs. The Holocamera images are downsampled to
2716×2048 to accommodate the GPU memory limitations. During training, we use image
patches of size 512×512. The image patches correspond to identical regions across all the
viewpoints. We perform testing on full-size images.
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Figure 5: Qualitative results on Wildtrack dataset. The panel in the middle shows the
reconstructions of LDMIC, while the panel on the right shows the reconstructions from
VEMIC. Our approach achieves high reconstruction quality with lower bpp than LDMIC.

Metrics We use the peak signal-to-noise ratio (PSNR) and multi-scale structural similarity
index (MS-SSIM) [29] to measure the reconstructed image quality compared to the ground-
truth image. We plot the rate-distortion curves to compare different methods. In addition,
we also calculate the Bjøntegaard Delta-Rate (BD-Rate) [6] to indicate the average bitrate
savings at the same level of distortion.

Benchmarks We compare our approach, VEMIC, with some of the popular traditional
codecs and the more recent learning-based codecs. For the traditional codecs, we use JPEG-
2000 [22] and BPG [5], which are widely used for single-view image compression. For
learned compression models, we perform comparisons with MLIC++ [14] and LDMIC [33],
the state-of-the-art models for single-view and multi-view compression, respectively. For
MLIC++, we perform comparisons with zero-shot evaluation, where the pre-trained model
is evaluated directly on the multi-view datasets.

Results The rate-distortion curves of our approach in comparison with all baselines are
reported in Figure 3. We observe that our method, VEMIC, achieves better compression
performance on both datasets, outperforming prior approaches by a significant margin. We
notice PSNR and MS-SSIM improvements consistently across all λ values. The test set for
both datasets consists of scenes that were not seen during training, demonstrating that our
method effectively generalizes to new scenes within each dataset.

To quantify the average bit rate savings, we also show the BD-rate [6] values for VEMIC
and other methods in Table 1 with BPG [5] method as the baseline. We observe that VEMIC
achieves state-of-the-art results on Holocamera and Wildtrack datasets on both PSNR and
MS-SSIM metrics. Our VEMIC achieves a BD-rate improvement of 72.91% over the prior
state-of-the-art multi-view image compression method, LDMIC, on the Holocamera dataset.

We also visualize the qualitative results in Figure 4. We observe that VEMIC can recon-
struct the input images with very high fidelity. While the visual quality of both LDMIC and
VEMIC are comparable, our approach achieves a much lower number of bits per pixel.

5 Conclusion
In this work, we address the problem of learning-based multi-view image compression using
a view-aware entropy model. Our idea is to inject the view information into the channel
context module, which can then be used in the entropy coding to improve the bitrate of the
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latent codes. We design the view-aware context module using an autoregressive attention-
based model that learns the correlations between the current views and all previous views.
We then show how these view context modules can be added to the single-view pre-trained
networks and finetuned end-to-end on multi-view datasets. Through experimental results on
various multi-view image datasets, we show that our approach can outperform prior baselines
and establish a new state-of-the-art for the multi-view compression problem.

Limitations and Future Work While our approach focuses on leveraging the cross-view
context in the entropy model alone, there may be advantages in incorporating view infor-
mation from various perspectives into both the encoder and decoder. This integration could
facilitate enhanced information exchange. However, we defer this aspect to be explored in
future research endeavors. Our current method, though effective, is limited to a relatively
small number of viewpoints. As the number of viewpoints increases, the computational de-
mands of self-attention become a constraint. Future work could address this by adopting
memory-efficient attention mechanisms. Additionally, expanding this approach to multi-
view video compression offers an exciting opportunity to exploit temporal correlations and
redundancies, further advancing the state of the art.
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