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Abstract
Video anomaly detection is a subject of great interest across industrial and academic

domains because of its crucial role in computer vision applications. However, the inher-
ent unpredictability of anomalies and the scarcity of anomaly samples present significant
challenges for unsupervised learning methods. To overcome the limitations of unsuper-
vised learning, which stem from a lack of comprehensive prior knowledge about anoma-
lies, we propose VLAVAD (Video-Language Models Assisted Anomaly Detection). Our
method employs a cross-modal pre-trained model that leverages the inferential capabil-
ities of large language models (LLMs) in conjunction with a Selective-Prompt Adapter
(SPA) for selecting semantic space. Additionally, we introduce a Sequence State Space
Module (S3M) that detects temporal inconsistencies in semantic features. By mapping
high-dimensional visual features to low-dimensional semantic ones, our method signif-
icantly enhance the interpretability of unsupervised anomaly detection. Our proposed
approach effectively tackles the challenge of detecting elusive anomalies that are hard to
discern over periods, achieving SOTA on the challenging ShanghaiTech dataset.

1 Introduction
Video anomaly detection (VAD) is a task of considerable practical value in various situations,
such as detecting abnormal behaviors such as theft, fighting, or falls, as well as anomalous
objects like vehicles entering pedestrian zones. The necessity of achieving this task increases
significantly in the context of security and intelligent cities[27, 44, 53, 60, 66]. However, due
to the sudden and often unclear nature of such events, identifying their time and location is
highly challenging.

Abnormal occurrences in the real world are infrequent and can be classified into an ex-
tensive array of categories. Consequently, conventional supervised VAD[25, 41, 46, 62] may
not be suitable for this task, as it is often impractical to gather a substantial dataset with la-
beled abnormal samples. To address the limitations of data annotation, some researchers
have turned to weakly supervised VAD that does not necessitate frame-by-frame annota-
tions but instead relies on video-level labels. In weakly supervised VAD, a video is deemed
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Figure 1: Comparison between previous methods (left) and our method (right). Our pur-
posed VLAVAD shifts from visual to semantic analysis, identifying shared attributes between
normal and anomalous data while ignoring unique visual traits. Unlike traditional methods
focused on specific visual cues like pose or motion, our approach is more adaptable across
different scenes, facilitated by task-related semantic feature selection. Additionally, we in-
troduce the Sequence State Space Module (S3M) to learn the temporal correlation of normal
samples, thereby detecting anomalies that deviate from the normal temporal pattern.

anomalous if any part of it is labeled as such. On the other hand, a video is labeled as nor-
mal only if all of its frames are normal. However, this approach is inefficient in pinpointing
the abnormal section of the video, especially when the video is long. The application of
unsupervised learning methodologies[1, 23, 42, 48], which involve training representations
solely on regular samples, allows for the separation of anomalous samples without the need
for prior knowledge about anomalies, thereby eliminating constraints imposed by the process
of collecting data.

The spatial and temporal complexities of anomalous features make it difficult to identify
and categorize all anomalies. Anomalous samples may not always exhibit clear differences
from normal samples; instead, they may sometimes closely resemble them in certain fea-
ture dimensions. Methods that rely on visual features often make judgments based on a
single observation that defines anomalies[16, 23, 45, 65], resulting in the mapping of all
normal samples into the same feature space and neglecting the variety of normal samples.
Therefore, referencing human understanding for anomaly discrimination necessitates a mul-
tidimensional assessment, combining various factors such as human posture, optical flow,
background changes, etc., for judgment. The multi-task learning paradigm that incorporates
diverse types of features has shown potential to enhance accuracy[4, 7, 18, 50]. However,
such multi-task-based algorithms incur high transfer costs across scenes and categories, im-
plying that achieving the desired detection performance requires fine-tuning each sub-task
to strike a balance.

In recent times, the Vision-Language Models (VLM) has enhanced accuracy in visual
downstream tasks, and also offer a reasonable level of interpretability[5, 31, 32, 33, 56].
To make use of the advancements in Vision-Language Pre-training models, we present the
Vision-Language Model Assisted Anomaly Detection (VLAVAD). This technique makes use
of Vision-Language Models (VLM) to transform images into high-level semantic represen-
tations. We replace visual features with semantic features and utilize the Selective Prompt
Adapter to focus on learning effective semantics from normal samples, thereby enabling
smooth adaptation to cross-scene, cross-category anomaly detection without the need for
additional model training. Given the significance of accounting for temporal information in
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videos for effective VAD, it is essential to consider the correlation of feature information
across time. Methods that only take into account the current frame when identifying anoma-
lies are insufficient, as they fail to capture the temporal dimension’s correlation. To harness
the temporal variations in semantic features, we propose the Sequence State Space Module
(S3M) to learn the temporal correlation of normal samples. In contrast to convolution-based
and transformer-based networks, S3M outperforms them by capturing long-range temporal
context dependencies with reduced computational costs.

Our proposed method, VLAVAD, eliminates the need for collecting and labeling anoma-
lous data, making it suitable for real-world applications. By utilizing Selective Prompt
Adapter (SPA) and employing a lightweight S3M trained on normal data, our approach ef-
fectively harnesses the deep semantic information in images, allowing for precise and inter-
pretable spatiotemporal localization of anomaly events. The method has been successfully
validated across multiple datasets, showcasing its cost-effective transferability and superior
performance.

In summary, our contributions can be summarized as follows:

• We present an unsupervised video anomaly detection framework called VLAVAD,
which utilizes semantic features rather than visual features for anomaly detection. This
framework capitalizes on the comprehension and reasoning skills of pretrained Visual-
Language model to enhance performance in VAD. Consequently, our method expands
the anomaly detection from a particular dimension to open-world.

• We introduce the pioneering use of the Sequence State Space Module (S3M) to tackle
temporal variation in anomaly detection, further mitigating the limitation of single-
frame anomaly assessment that overlooks time-related anomalies.

• Our method allows for cost-effective universal anomaly event discrimination across
scenes, achieving a 2.7% improvement in performance on the challenging cross-scene,
cross-category Shanghaitech dataset. We also validate the superiority of our approach
across multiple datasets.

2 Related Work

2.1 Video Anomaly Detection

In unsupervised Video Anomaly Detection tasks, two primary categories emerge: feature
reconstruction and video frame interpolation. Feature reconstruction methods typically em-
ploy Auto Encoder (AE)[22, 51, 52] or Generative Adversarial Network (GAN)[10, 26] to
project normal data into a low-dimensional space for reconstruction in either temporal or
spatial dimensions. Reconstruction methods assume a neural network model that has been
exclusively trained on normal samples, which can reconstruct normal samples from low-
dimensional features, while anomalous samples cannot be reconstructed[58]. Conversely,
video frame interpolation methods entail training a prediction network to forecast the state
of an object with missing input frames. By comparing the prediction results with actual out-
comes, deviations are assessed to identify anomalies. This method assumes that a network
trained on a dataset of normal samples cannot predict frames of anomalous events, thereby
effectively differentiating between normal and anomalous events[22, 68].
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2.2 Vision-Language Pre-training

In recent years, the domain of vision-language pre-training has witnessed significant progress,
primarily aimed at discerning the semantic interplay between visual and linguistic modali-
ties through extensive pre-training on diverse datasets. A quintessential illustration of this
paradigm is the CLIP[49], which excels in achieving its goals by employing an image-text
contrastive learning strategy. This method involves aligning paired images and texts in the
embedding space, bringing similar pairs closer together and pushing dissimilar pairs fur-
ther apart. By utilizing this approach, pre-trained Vision-Language Models (VLMs) are able
to acquire extensive knowledge of vision-language correspondence. This enables VLMs to
make zero-shot predictions by matching the embeddings of any given images and texts.

VLMs have shown outstanding performance in diverse vision-language downstream tasks,
such as image classification[49], object detection[13, 14, 21], scene text detection[63], im-
age captioning[31, 70], semantic segmentation[12, 19]. In recent times, a number of stud-
ies have endeavored to employ pre-trained models in the domain of video. For example,
CLIP4Clip[37] utilized the CLIP’s expertise in video-text retrieval, while other works[34,
47, 59] applied CLIP to video recognition. VisualGPT[11] highlights the advantages of uti-
lizing pretrained language models to initialize models for more efficient training with less
data. Furthermore, Tsimpoukelli et al. [55] enhances performance by fine-tuning a vision
encoder and aligning it with a frozen Large Language Model (LLM). Models such as BEiT-
3[57] and BLIP[31] employ unified transformer architectures for pretraining, and Flamingo
et al. [2] introduces a cross-attention design to align visual and language modalities. Ad-
ditionally, BLIP-2[32] introduces a lightweight Q-Former that converts visual features into
tokens directly interpretable by a frozen LLM, achieving impressive results in both image
captioning and VQA tasks. Our research leverages the VQA capabilities of BLIP-2 through
our automatic questioning mechanism to extract additional image information and enhance
image captions beyond the original BLIP-2 captions.

3 Method

3.1 Overview

Our main objective is to develop an unsupervised learning methodology to effectively han-
dle scenarios with unpredictable and unobtainable anomalous data samples. Our approach
involves transitioning from vision to semantic features, identifying common attributes be-
tween normal and anomalous data in the semantic space while excluding non-shared visual
features. In contrast to conventional methods that heavily rely on specific aspects of visual
features such as pose or optical flow data, our approach offers a significant advantage in its
seamless adaptability across diverse cross-scene datasets, facilitated by the incorporation of
a Prompt Adapter. Additionally, we introduce the Sequence State Space Module (S3M) to
detect temporal variations in semantics, complementing single-frame detection results and
addressing the limitation of underutilizing temporal information in anomaly detection.

3.2 Obtain Multi-object Trajectories

Our Anomaly Detection Architecture receives a series of object-level temporal image se-
quences for input. To achieve object detection, we employ a pre-trained YOLOx network.

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Du, Wei, Zhang, Shi, Gao, and Li} 2022

Citation
Citation
{Feng, Zhong, Jie, Chu, Ren, Wei, Xie, and Ma} 2022

Citation
Citation
{Gu, Lin, Kuo, and Cui} 2021

Citation
Citation
{Xue, Zhang, Hao, Lu, Torr, and Bai} 2022

Citation
Citation
{Li, Li, Xiong, and Hoi} 2022{}

Citation
Citation
{Zhou, Palangi, Zhang, Hu, Corso, and Gao} 2020

Citation
Citation
{Ding, Xue, Xia, and Dai} 2022

Citation
Citation
{Ghiasi, Gu, Cui, and Lin} 2022

Citation
Citation
{Luo, Ji, Zhong, Chen, Lei, Duan, and Li} 2022

Citation
Citation
{Liu, Huang, Li, Feng, Wu, and Li} 2023

Citation
Citation
{Ni, Peng, Chen, Zhang, Meng, Fu, Xiang, and Ling} 2022

Citation
Citation
{Wasim, Naseer, Khan, Khan, and Shah} 2023

Citation
Citation
{Chen, Guo, Yi, Li, and Elhoseiny} 2022{}

Citation
Citation
{Tsimpoukelli, Menick, Cabi, Eslami, Vinyals, and Hill} 2021

Citation
Citation
{Wang, Bao, Dong, Bjorck, Peng, Liu, Aggarwal, Mohammed, Singhal, Som, etprotect unhbox voidb@x protect penalty @M  {}al.} 2022

Citation
Citation
{Li, Li, Xiong, and Hoi} 2022{}

Citation
Citation
{Alayrac, Donahue, Luc, Miech, Barr, Hasson, Lenc, Mensch, Millican, Reynolds, etprotect unhbox voidb@x protect penalty @M  {}al.} 2022

Citation
Citation
{Li, Li, Savarese, and Hoi} 2023



C.LI, Y.JIANG, ET AL: VLAVAD 5

Figure 2: Overview of our purposed VLAVAD. In the preprocessing stage, object-level se-
quences {Ti}N

i=1 are obtained through detection and tracking. During training, the Selective
Prompt Adapter (SPA) selects the most suitable prompt from the prompt pool to describe
the dataset scene samples. Subsequently, the Sequence State Space Module (S3M) takes
clip-level semantic features E(t) as input and is trained using Mean Squared Error(MSE)
loss between the predicted feature output and the expected feature to learn the deviations in
temporal patterns. During testing, we utilize the prompt selected by SPA from the training
set to generate the answer sequence. We then calculate As and At , which represent the static
caption anomaly score and time inconsistency anomaly score, respectively.

Additionally, we utilize the ByteTrack algorithm for object tracking to train the S3M. Conse-
quently, we acquire object-level trace trajectories T = {Oi} fend

i= fbegin
, where O denote the image

of the detected object, fbegin and fend denote the frame index of the object’s appearance and
disappearance, respectively. Finally, we obtain a object-level trajectories set {Ti}N

i=1, where
N is the total number of objects detected in the video, which facilitates the segmentation of
each object into clips during both training and testing phases.

3.3 Algorithm Description
Illustrated in the right half of Figure 2, our network comprises three components. The first
component, the Selective Prompt Adapter, employs the frequency distribution of the output
of LLM to compute anomaly scores for individual objects detected within a single frame. It
selects the most salient score among multiple objects within the same frame and designates
it as the anomaly score for that frame, denoted as Ak = maxn

i=1(AOi), where Ak represents
the anomaly score for the k-th frame and AOi represents the anomaly score for the i-th object
within that frame. The second component, the Sequence State Space Module (S3M), takes
as input the object-level text embedding sequence generated by VLM. It undergoes unsuper-
vised training solely on the normal samples within the training set and computes anomaly
scores based on the temporal inconsistency of features during the test phase. Finally, we
integrate the static anomaly scores with the dynamic ones and apply Gaussian smoothing to
obtain the final score.

3.3.1 Selective Prompt Adater

To promote the utilization of Vision-Language Models (VLMs) in anomaly detection, we in-
troduce the Selective Prompt Adapter (SPA) module. This component aids VLM in selecting
appropriate prompts by evaluating the statistical properties of common text features in typ-
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ical data. Anomaly detection typically entails mapping the input data to a low-dimensional
space, and its efficacy hinges on the ability to compress input images into a low-dimensional
feature space. Leveraging the dual capabilities of image and text inputs in VLMs, we are
able to identify the common features of normal samples by utilizing multiple text inputs.
This process effectively distinguishes them from anomalous samples and enhances the preci-
sion of anomaly detection. Specifically, the SPA module selects the most appropriate prompt
for dimensionality reduction of normal samples by examining the frequency of text features.
By concentrating normal samples in a more compact low-dimensional space, the final input
prompt text Pselected can be represented as:

Pselected = max
i

(
Ftopk (GV LM(I,Pi))

)
(1)

In the context of object-level image inputs obtained from the training set and represented
by the symbol I, GV LM denotes the vision-language model. The top (k) frequency statistics
are represented by Ftopk, and Pselected denotes the prompt pool selected to maximize the
concentration of output features from the training set. We choose the prompt with the highest
Ftopk statistics from normal samples as the optimal input for compressing common features.
During the testing phase, the same set Pselected is used, and the anomaly score for each object
is calculated based on the reciprocal of the frequency of occurrence of the object’s text in the
training dataset, as anomalies are less frequent in the selected semantic space.

As(t) =
1

F (GV LM(I(t),Pselected))
(2)

3.3.2 Sequence State Space Module

We present a Sequence State Space Module (S3M) designed to identify changes in semantic
features over extended periods. The S3M extracts persistent patterns of state transitions
within lengthy sequences in normal events and encodes them for predicting future states
based on past observations. The model also identifies anomalies by leveraging disparities
between predicted and observed states. Moreover, the S3M’s ability to capture long-range
dependencies enhances its capacity to uncover comprehensive anomaly clues.

The input to the S3M includes embeddings obtained from the answer text of VLM, com-
bined with object-level trajectories. The embedding sequences of objects appearing in all
frames of the video are segmented into a set of clips. The input is the text sequence output
by the text encoder E , denoted as {Ei(t),Ei(t +1), . . . ,Ei(t +Lc)}N

i=1, where E(t) ∈ R512, N
is the total number of objects, and Lc represents the length of each clip. The S3M function
is defined as follows:

Ei(t) = E(GV LM(I(t),Pselected)) (3)

S3M(Ei(t);W (t,L)) = Êi(t +Lp +1), Êi(t +Lp +2), ...Êi(t +Lp +Lc) (4)

Here,W (t,L) represents the window function, which retains the input from the previous
Lp moments. Êi denotes the output obtained from the S3M. The objective function of the
S3M network is to reduce the divergence between ground truth sequences and predictions.

Ltic = ||Êi(t +Lp, t +Lc),Ei(t +Lp, t +Lc)||2 (5)

Where ||.||2 denotes mean square error. The S3M is trained solely on normal samples,
with the aim of learning the normal motion patterns. Therefore, when abnormal samples
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from the test set are utilized as input, the module’s prediction which is derived from normal
patterns diverge from observations. The anomaly score at the testing stage is calculated as:

At(t) = ||Êi(t +Lp, t +Lc),Ei(t +Lp, t +Lc))||2 (6)

3.3.3 Computation of Anomaly Scores

After obtaining the object-level anomaly scores As(t) and At(t), we compute the final anomaly
score A(t) as follows: the maximum score among all objects {Oi}n

i=1 within the current frame
is selected for both As(t) and At(t). To reduce the impact of noise, we apply a 1-D Gaussian
filter to smooth the scores. The expression can be written as:

A(t) = Guess
(

max
i

(As(t)Oi)+λ max
i

(At(t)Oi) ;σ

)
(7)

In this formula, Guess represents the 1-D Gaussian filter. As(t) denotes the static anomaly
score obtained by SPA, which includes only the information at the moment t. At(t) denotes
the dynamic anomaly score obtained by S3M, which incorporates information from a period
of Lc. And λ is a hyperparameter that adjusts the weight between the two.

4 Experiments

4.1 Dataset and Evaluation Metrics
Dataset: The study presented in this article employs several benchmark datasets that de-
pict complex anomalous events occurring in diverse settings captured from various vantage
points. The UCSD dataset [40] is a collection of videos captured in different crowd scenar-
ios. The "Pedestrian 2" (Ped2) subset we used includes 16 training video samples and 12
testing video samples. The Avenue dataset [36] consists of 21 testing videos of anomalous
events and 16 training videos of normal events. The dataset contains a total of 47 anomalous
events, including behaviors like walking in the wrong direction, running, dancing, and ob-
ject throwing. The ShanghaiTech dataset [35] comprises 330 training videos and 107 testing
videos. With 13 scenes characterized by complex lighting and camera angles, this dataset
includes 42,883 testing frames and 274,515 training frames. The ShanghaiTech dataset is the
most extensive and intricate, presenting the greatest challenges for VAD due to its semantic
complexity and cross-scene detection requirements.

Metrics: Performance metrics in anomaly detection research are typically assessed using
ground truth annotations at either the frame or video level within datasets. When an anoma-
lous event is identified within a frame, the entire frame is classified as anomalous, evaluating
frame-level metrics. Due to the inherent imbalance between normal and anomalous samples
in anomaly detection datasets, we evaluate the performance of VAD using the area under
the curve (AUC) of the frame-level receiver operating characteristics (ROC), which remains
indifferent to thresholding in the detection task.

4.2 Implementation Details
For the network structure, we utilized the ByteTrack model [67] pretrained on the MOT17
dataset [43], with its backbone derived from the pretrained YOLOx [17] on MS-COCO. The
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Pub. Year Methods UCSD Ped2 Avenue ShanghaiTech
MPPC+SFA[40] 61.3% - -

Conv-AE[22] 90.0% 70.2% -
2018 before ConvLSTM-AE[38] 88.1% 77.0% -

StackRNN[39] 92.21% 81.71% 68.0%
Frame-Pred[35] 95.4% 85.1% 72.8%
Mem-AE[20] 94.1% 83.3% 71.2%

2019 AnoPCN[64] 96.8% 86.2% 73.6%
Deep-OC[61] 96.9% 86.6% –
ClusterAE[8] 96.5% 86.0% 73.3%

2020 IPR[54] 96.20% 83.70% 71.50%
MNAD-Recon[48] 90.2% 82.8% 69.8%

2021 CT-D2GAN[15] 97.2% 85.9% 77.7%
LNRA[3] 96.5% 84.7% 76.0%

2022 ARAE[29] 97.4% 86.7% 73.6%
CR-BPN [9] 98.3% 90.3% 78.1%
MGME [69] 97.8% 87.6% 73.5%

2023 SPTD[28] - - 84.5%
OFR-E[24] 97.7% 89.7% 75.8%
STM[30] 97.0% 87.7% 76.1%

2024 CR-KR[6] 97.1% 90.8% 83.7%
Ours 99.0% 87.6% 87.2%

Table 1: Comparison of the AUC on the UCSD Ped2, Avenue, and ShanghaiTech.

tracking confidence threshold parameter was set to 0.5 for both training and testing sets,
with an NMS threshold of 0.3, filtering out tiny boxes with an area less than 300. Regard-
ing the pretrained Blip-2[32] on a combined dataset of 129 million images from COCO,
Visual Genome, CC3M, etc., its Image Encoder part was pretrained ViT-g, while the Large
Language Model part utilized a lighter pretrained OPT-2.7B. Three input prompt texts were
selected for pose and behavior, Question 1: "What is the pose of the person in the picture?"
Question 2: "What is the behavior or action of the person in the picture?" Question 3: "What
does the person in the picture look like?" The S3M’s layers were configured with 3 layers,
with 10 input frames and 2 predicted frames for Avenue and Ped2, and 20 input frames and
4 predicted frames for the ShanghaiTech. The learning rate was set to 5e-1 for Avenue and
Ped2, and 5e-2 for ShanghaiTech. Finally, for the Anomaly Scoring, the λ were set to 0.1,
and GMM was used for Gaussian smoothing, with sigma values of 6, 6, and 12 for Ped2,
Avenue, and ShanghaiTech.

4.3 Comparison with state-of-the-art methods
Our VLAVAD has been compared with other unsupervised anomaly detection methods in
Table 1. On the UCSD Ped2 and ShanghaiTech datasets, the combined results demonstrated
a significant lead over the state of the art, achieving AUC scores of 99.0% and 87.2% respec-
tively. Notably, the latter achieved a lead of 2.7%, making it a substantial benchmark across
scenarios involving 130 complex anomalous events, both human-related and unrelated. Our
AUC scores on this dataset exceed those of other methods, confirming that our model is
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As At Dataset
kNN SPA Trans. RNN S3M Ped2 Shanghaitech
✓ - - - - 96.3% 72.3%
- ✓ - - - 98.2% 86.5%
- - ✓ - - 93.2% 81.2%
- - - ✓ - 92.3% 80.7%
- - - - ✓ 96.6% 82.6%
- ✓ - - ✓ 99.0% 87.2%

Table 2: Ablation study results on Ped2 and ShanghaiTech datasets.

better suited for universal anomaly detection scenarios. Nevertheless, our experimental out-
comes on the CHUK Avenue dataset did not achieve parity with the SOTA benchmarks. This
divergence can be principally attributed to the dataset’s unconventional anomaly definition
criteria, which uniquely consider variables such as the directionality of human locomotion
as anomalous indicators, while our model did not account for the incorporation of pedes-
trian walking direction as an atypical anomaly within its caption. Consequently, this dataset
performs better when focusing on velocity, such as using optical flow for discrimination.

4.4 Ablation Study
To assess the usefulness of mining text features generated by VLM for anomaly detection,
we compared directly using the 512-D visual features output by the image encoder of CLIP
for kNN classification and the scores obtained from SPA. Furthermore, in order to verify
the effectiveness of both input pathways, we conducted an Absolute Study by adjusting the
λ . The AUC achieved by kNN classification using only the visual features produced by the
Visual Encoder is lower than that obtained when utilizing SPA for feature mining on both
the Ped2 and ShanghaiTech datasets, highlighting the effectiveness of visual features over
semantic features for anomaly detection. Additionally, we replaced S3M with transformer
and RNN structures for experimentation, and S3M outperformed these two models due to
its characteristics that make it less prone to overfitting, which are more suitable for this
prediction task. Finally, incorporating S3M on both datasets shows a certain degree of im-
provement. This improvement is attributed to the presence of short-duration anomaly events
that may be intermittent in time, with S3M aiding in the detection of anomalies with longer
durations. The experimental results are shown in Table 2.

5 Conclusions
Previous efforts in video anomaly detection have typically relied on visual representations,
which has limited the ability to generalize across diverse situations. For instance, behav-
iors that are considered typical in one context may be deemed anomalous in another. Our
method addresses this challenge by employing the Selective Prompt Adapter (SPA) to enable
a pretrained VLMs to perform cross-scenario, interpretable anomaly detection more effec-
tively. The advancement of cross-modal large models, as well as the progress in cross-modal
matching models and Language Language Models (LLMs), has made it possible to extend
this technique to enhance the interpretability and generalization of VAD.
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