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Abstract
Automatic image anomaly detection is important for quality inspection in the man-

ufacturing industry. The usual unsupervised anomaly detection approach is to train a
model for each object class using a dataset of normal samples. However, a more re-
alistic problem is zero-/few-shot anomaly detection where zero or only a few normal
samples are available. This makes the training of object-specific models challenging.
Recently, large foundation vision-language models have shown strong zero-shot perfor-
mance in various downstream tasks. While these models have learned complex rela-
tionships between vision and language, they are not specifically designed for the tasks
of anomaly detection. In this paper, we propose the Few-shot/zero-shot Anomaly De-
tection Engine (FADE) which leverages the vision-language CLIP model and adjusts
it for the purpose of industrial anomaly detection. Specifically, we improve language-
guided anomaly segmentation 1) by adapting CLIP to extract multi-scale image patch
embeddings that are better aligned with language and 2) by automatically generating
an ensemble of text prompts related to industrial anomaly detection. 3) We use addi-
tional vision-based guidance from the query and reference images to further improve
both zero-shot and few-shot anomaly detection. On the MVTec-AD (and VisA) dataset,
FADE outperforms other state-of-the-art methods in anomaly segmentation with pixel-
AUROC of 89.6% (91.5%) in zero-shot and 95.4% (97.5%) in 1-normal-shot. Code is
available at https://github.com/BMVC-FADE/BMVC-FADE.

1 Introduction
Industrial image anomaly detection involves anomaly classification (AC) and anomaly seg-
mentation (AS) which aim to identify and localise anomalies occurring on objects found
in manufacturing industries. Most of the current research focuses on unsupervised anomaly
detection where only normal samples are used during training while both normal and anoma-
lous samples are evaluated during inference [2, 6, 8, 12, 18, 19]. Some of these approaches
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Figure 1: Zero-/one-shot anomaly segmentation results of FADE.

are able to achieve high performance when a large number of normal training samples is
available. But this is not a realistic setting for industrial anomaly detection for two reasons.
First, the number of normal training samples can be scarce or unavailable. Second, one spe-
cific model needs to be trained for each object class and this quickly becomes unscalable
when the number of object classes increases.

Zero-shot/few-normal-shot anomaly detection is a more realistic setting with either zero
or only a few normal reference images available. However, many previous methods designed
for unsupervised anomaly detection perform poorly under this low-data regime. There are
increasingly more research works focusing on this area recently [4, 9, 10, 22, 24] but there
is still much room for improvement.

Vision foundation models trained on large image datasets have recently shown superb
zero-shot capability on various computer vision tasks such as image classification, object
detection and segmentation [11, 16, 17]. There is great potential to leverage and transfer
the knowledge and representations learned in these foundation models for the zero-/few-
shot anomaly detection task. But these foundation models are not specifically designed
and trained for anomaly detection. As such, we propose the Few-shot/zero-shot Anomaly
Detection Engine (FADE) that utilises one of these foundation models, the CLIP model [17],
and adapt it for the purpose of industrial AC and AS.

CLIP is a visual-language model pretrained on large datasets of image-text pairs using
a contrastive loss. CLIP learns concepts and representations that capture the relationship
between language and image. Without any finetuning, the model has demonstrated zero-
shot capability in various downstream tasks such as image classification. This is done by
constructing free-form text prompts as classification labels which enable the use of natural
language to extract relevant information already learned by the CLIP model. This allows
CLIP to be a suitable candidate for handling the anomaly detection task. The concept of
anomaly and normality is broad and abstract. But language allows us to describe a specific
anomaly precisely (E.g. a cracked object, a scratched surface, a missing component). CLIP
can leverage the power of language to better capture the concept of anomaly and hence im-
prove upon zero-shot anomaly detection performance. However, this requires careful prompt
engineering and some methods [10] manually design an ensemble of text prompts with key
words such as “damage” and “defect” which can be a time-consuming process. As such,
we propose to utilise existing Large Language Model (LLM) to automatically generate text
prompts related to the concept of normality and anomaly.

There is another challenge associated with language-guide anomaly detection. ViT-based
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CLIP model is trained by aligning the image-level CLS token embeddings with the text em-
beddings. This works for image-level anomaly classification but not pixel-level anomaly seg-
mentation. This is because language-guided segmentation requires the comparison between
the image patch embeddings and the text embeddings. However, the patch embeddings are
not aligned to natural language during training. This results in sub-optimal segmentation
performance [3, 10, 15]. To address this issue, we propose to apply the Grounding Every-
thing Module (GEM) [3] to extract the image patch embeddings which are shown to have
better alignment with language and perform better in zero-shot segmentation.

While CLIP can be used for language-driven anomaly detection, we can also only use
its image encoder for vision-based anomaly detection. In this case, visual representations of
image patches extracted from both query and reference images are compared to one another
to identify inconsistencies and anomalies. This enhances zero-shot performance and extends
the approach to the few-shot setting when normal reference images are available.

In summary, we propose FADE which uses pretrained CLIP model for zero-/few-shot
anomaly detection without any further training or fine-tuning. Our main contributions are:

• We utilise GEM patch embeddings which are better aligned with language to improve
zero-shot language-guided AS. In addition, we adopt a multi-scale approach to make
the method robust at detecting anomalies of different sizes.

• We further improve language-guided anomaly detection by using an LLM to automat-
ically generate a prompt ensemble that captures the concept of normality and anomaly
using a diverse set of text prompts which are related to industrial anomaly inspection.

• We enhance anomaly detection performance by employing a vision-guided approach
that can be applied to both zero- and few-shot settings.

• FADE shows competitive results on the MVTec-AD and VisA benchmarks for AC and
AS under both the zero-shot and few-normal-shot regimes.

2 Related Work

Anomaly detection: Most research has focused on unsupervised anomaly detection where a
model is trained on many normal training samples [2, 6, 8, 12, 18, 19]. Among them, Patch-
Core [18], a memory bank based method, has achieved state-of-the-art performance. There
has been a growing interest in zero-/few-shot anomaly detection since the performance of
the above methods decreases under such regimes. Earlier work such as Metaformer [22]
addresses the problem in a meta-learning framework. RegAD [9] detects anomalies by com-
paring registered features of a test image with the normal reference images. However, both
methods require model training using some datasets. A recent work, Segment Any Anomaly
(SAA) [4], leverages a foundation segmentation model SAM [11] for zero-shot AS.
Anomaly detection with CLIP: Recently, CLIP has shown impressive language-driven
zero-shot capability in various computer vision tasks [17]. WinCLIP [10] is one of the first
to use CLIP for language-guided zero-/few-shot anomaly detection. The paper adapts CLIP
for pixel-wise AS by extracting dense CLIP features based on overlapping windows. Sub-
sequent papers APRIL-GAN [5] and AnomalyCLIP [24] build upon the general framework
of WinCLIP and introduce additional learnable layers and learnable prompts respectively to
fine-tune the model for AS. ClipSAM [13] leverages CLIP to obtain a rough anomaly seg-
mentation mask from which points and bounding boxes are then extracted and used by SAM
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as input prompts to further refine the segmentation. However, all the above methods use
auxiliary datasets with ground truth anomaly segmentation masks for training. Other meth-
ods explore prompting in detail. [14] constructs manual and learnable normal and anomaly
prompts and proposes a one-class prompt-learning method for few-shot detection. [21] aug-
ments normal and anomalous text prompts by inserting random words and uses their CLIP
text embeddings to train a feed-forward network for zero-shot AC. Our method, unlike most
of the above works, does not require further training or fine-tuning.

Zero-shot segmentation with CLIP: While CLIP shows strong zero-shot image classifica-
tion capability, there are challenges to adapt it for dense pixel-wise segmentation. The main
problem is that CLIP training does not directly optimise for alignment between language
and local image patch embeddings [10]. In addition, empirical segmentation results show
that CLIP tends to generate opposite visualisation between foreground/background and also
produce noisy activations [15]. Several works have attempted to tackle these issues by adapt-
ing the CLIP model architecture for zero-shot segmentation [3, 15, 23]. CLIP Surgery [15]
replaces the query-key attention in the original transformer block with a value-value atten-
tion and also removes the feed-forward network. [3] proposes GEM blocks which further
generalises the idea to self-self attention. In our work, we apply the GEM blocks to the task
of anomaly segmentation.

3 Method

FADE conducts both anomaly classification (AC) and anomaly segmentation (AS) under the
zero-/few-shot settings. It consists of four different anomaly detection pipelines that are used
under different cases (Fig. 2a-d). The detection pipeline can be either language- or vision-
guided. Language-guided detection utilises the language capability of the CLIP model to
perform zero-shot AC (Fig. 2a) and AS (Fig. 2b). On the other hand, vision-guided detection
employs visual cues from images to further improve zero-shot AS (Fig. 2c) and extends the
approach to few-shot detection (Fig. 2d).

3.1 Language-Guided Anomaly Classification

Zero-shot language-guided AC (Fig. 2a) is carried out as described in WinCLIP [10]. A
prompt ensemble t = {t+, t−} is manually crafted which captures the notion of object anomaly
or normality (Appendix A of [10]) where t+ and t− are the sets of 88 anomalous and 154 nor-
mal text prompts respectively. An example of a normal prompt is “a cropped photo
of the flawless [o]” while an anomalous prompt can be “a cropped photo
of the damaged [o]” where [o] is the object label that comes with the dataset (E.g.
bottle). The CLIP text encoder g extracts the text embeddings of all the prompts. The
average text embeddings h for the anomalous and normal text prompts are computed as
h+ = 1

Nt+
∑t∈t+ g(t) and h− = 1

Nt−
∑t∈t− g(t) where Nt+ and Nt− are the number of anomalous

and normal prompts respectively. Given an image x and the CLIP image encoder f clip, we
compute its image embeddings f clip

cls (x) where cls indicates the CLS token of the ViT-based
CLIP model. The cosine similarity ⟨ f clip

cls (x),h⟩ then gives a measure of how close the im-
age is to the concept of normality or anomaly as encapsulated by the text prompts. Binary
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Language-guided anomaly classification (zero-shot)

(a)

Language-guided anomaly segmentation (zero-shot)

(b)

Vision-guided anomaly segmentation (zero-shot)

(c)

Vision-guided anomaly classification and segmentation (few-shot)

(d)
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Give 100 prompts that describe a photo of an undamaged/a defective object or 
texture in industrial manufacturing. Do not mention specific object name. Be diverse 
in adjectives and sentence structure. Give your outputs in JSON format as a list.

Instruction

Normal Response

An immaculate, unblemished object with perfect symmetry.	
A sleek, refined surface devoid of any imperfections.	
A seamless, faultless texture with uniform consistency.	
A shiny, lustrous surface radiating with perfection.	
A flawless, polished object with a flawless finish...

Anomaly Response

A jagged, fragmented surface in a manufacturing setting.	
An irregular, bumpy texture with visible cracks.	
A warped, distorted object with uneven edges.	
A scratched, scuffed material displaying signs of wear.	
A broken, fragmented object with missing pieces...

Figure 2: Different components of FADE. (a) Zero-shot language-guided AC; (b) Zero-shot
language-guided AS; (c) Zero-shot vision-guided AS; (d) Few-shot vision-guided AC and
AS; (e) ChatGPT prompts generation: An instruction given to ChatGPT and some of its
responses.

zero-shot AC is performed by calculating a language-guided anomaly score:

slang =
exp

(
⟨ f clip

cls (x),h+⟩/τ
)

exp
(
⟨ f clip

cls (x),h+⟩/τ
)
+ exp

(
⟨ f clip

cls (x),h−⟩/τ
) (1)

where τ is a temperature parameter fixed at 0.01.

3.2 Language-Guided Anomaly Segmentation

GEM embeddings: Given an image of size h×w, AS generates a dense pixel-level predic-
tion M ∈ [0,1]h×w which localises the anomalous regions. The above framework for AC can
be extended to zero-shot language-guided AS (Fig. 2b). Specifically, the patch embeddings
{ f clip

p (x)}p∈Patches from the last transformer block of the CLIP image encoder are extracted
to replace the CLS embeddings f clip

cls (x) in Eq. 1, where Patches is a set of all patches ex-
tracted from an image x. This enables anomaly prediction at each location of a patch p that
can be spatially combined to form a dense segmentation map. However, this approach yields
poor results [3, 10] since CLIP is trained using an image-level contrastive loss that aligns the
image-level CLS embeddings with the text embeddings. Hence, CLIP has poor alignment
between its patch embeddings and the text embeddings, resulting in its failure to generalise
its zero-shot capability to the dense segmentation task. WinCLIP [10] solves this issue by
introducing a grid of overlapping windows where each window masks out the image content
outside of the window and computes the CLS embeddings of the content inside the window.
This produces a dense segmentation while maintaining the visual-language alignment.
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We take a different approach based on the Grounding Everything Module (GEM) [3]
that has demonstrated success in zero-shot open-vocabulary object localisation. GEM
uses the idea of self-self attention which computes query-query, key-key and value-
value attention weights instead of the query-key attention weights in the conventional
self-attention mechanism. Mathematically, self-self attention weights are given by:
Attnsel f -sel f = softmax

(
hclip

PatchesW · (hclip
PatchesW )T

)
where hclip

Patches ∈ RN×d are the patch em-
beddings of dimension d from the previous transformer block of the original CLIP model
for all N patches in an image. W ∈ {Wv,Wq,Wk} are the projection matrices of the current
transformer block. The outputs from q-q, k-k and v-v attention are ensembled together to
form the output of a GEM block. The GEM block also removes the feed-forward network
from the conventional transformer block and is constructed as a parallel pathway to the orig-
inal transformer blocks pathway. The outputs of all the GEM blocks at different layers are
summed together to obtain the final GEM patch embeddings { f gem

p (x)}p∈Patches. The zero-
shot language-guided AS mask Mlang =

{
Mlang

p
}

p∈Patches is then obtained where each patch

anomaly score Mlang
p is computed as:

Mlang
p =

exp
(
⟨ f gem

p (x),h+⟩/τ
)

exp
(
⟨ f gem

p (x),h+⟩/τ
)
+ exp

(
⟨ f gem

p (x),h−⟩/τ
) (2)

.
GEM embeddings have shown better visual-language alignment without further fine-

tuning the CLIP model. It also has a connection to clustering properties that group similar
pixels together, resulting in better zero-shot segmentation [3]. GEM patch embeddings are
computed based on the global context of the entire image which is important for anomaly
segmentation (E.g. anomalous regions are better identified through comparison with normal
regions). In contrast, WinCLIP embeddings only have a limited context restricted to a local
window. In addition, GEM can be computationally more efficient with a single forward pass
of the whole image.
Prompt engineering: CLIP is pretrained on large datasets of visual-language pairs and
learns powerful representations and alignment between images and texts that are useful for
anomaly detection. Prompt engineering that captures the specific description and concept of
anomaly is essential for maximising the zero-shot capability of the CLIP model. While the
WinCLIP prompt ensemble has been designed manually to optimise for anomaly detection,
we notice that AS performance can be further improved with additional prompt engineering.

The concept of anomaly and normality is broad and goes beyond the limited descriptions
provided by the WinCLIP prompts that use mostly general words like “damage”, “flaw”. In
contrast, the MVTec and VisA datasets contain different types of specific industrial anoma-
lies such as “a scratch”, “a crack”, “a missing part”. While these specific descriptions are
useful for AS, manually crafting them is time-consuming and unscalable. Instead, we use
a large language model, ChatGPT 3.51, to automatically generate a large number of text
prompts that contain a diverse set of specific descriptions related to industrial anomaly de-
tection. Fig. 2e shows an instruction prompt that is passed to ChatGPT 3.5 and some of
its responses. The instruction ensures that specific object names are not mentioned in the
response so that the generated text prompts are object-agnostic. This is because the notion
of the specific object becomes less relevant for AS when the patch embeddings focus on
local anomalous regions that are only part of the object. We also attempt to add information
regarding the anomaly size and location in the text prompts but it did not improve the results.

1https://chat.openai.com
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We use 5 instruction prompts with different wordings to obtain responses that are more
diverse and varied. This generates a total of 486 anomaly and 423 normal prompts that form
the ChatGPT prompt ensemble. The instructions and their responses are listed in supple-
mentary. The ChatGPT and WinCLIP prompt ensembles are combined and used for AS.
Multi-scale aggregation: We extract multi-scale GEM embeddings in order to detect anoma-
lies with different sizes. Although the CLIP model is trained at a fixed image size, it can take
inputs of different image sizes during inference by interpolating the positional embeddings.
We resize the original image to 3 input sizes: 240×240, 448×448, 896×896. Given that
the patch size of the model is 16, this corresponds to output segmentations with size 15×15,
28× 28 and 56× 56. The segmentations are then upscaled to a fixed size and averaged to
give the final segmentation map Mlang.

3.3 Vision-Guided Anomaly Classification and Segmentation
Vision-guided anomaly detection extracts and compares visual cues from images in order
to identify anomalies. This is complementary to the language-guided approach and further
extends it to the few-shot setting.
Few-shot setting: The performance of AC and AS improves when a few reference normal
images are available. Specifically, we follow the approach similar to WinCLIP [10] where
we build a memory bank R of CLIP patch embeddings extracted from the k reference images
(Fig. 2d). We have also tried to use GEM embeddings but the results are inferior. Given a
query image x and its CLIP embeddings f clip

p (x) for a patch p, the vision-guided anomaly
score for this patch under the k-shot setting is computed as the cosine distance to its nearest
neighbour patch in the memory bank: Mvis,k

p = minr∈R
1
2

(
1−

〈
f clip
p (x),r

〉)
. Spatially com-

bining the anomaly scores of the patches at all locations in an image gives the vision-guided
segmentation map. We can extend this to a multi-scale approach by building a separate
memory bank for the patch embeddings extracted from the reference images at different
scales (E.g. different image sizes). The multi-scale segmentation maps are averaged to give
the final vision-guided segmentation Mvis,k under the k-shot setting. In addition, we use the
maximum value of Mvis,k as an anomaly score svis,k for few-shot vision-guided AC.
Zero-shot setting: Vision-guided AS can also be applied in the zero-shot setting (Fig. 2c)
with 2 differences compared to the few-shot setting: 1) The memory bank is built using
patches from the query image itself since reference images are unavailable. In this case, the
resulting anomaly score is computed as the distance to the second nearest neighbour patch
since the nearest neighbour is the patch itself. 2) GEM patch embeddings are used since they
perform better than CLIP patch embeddings. Multi-scale aggregation is used again to give
the final segmentation Mvis,0 under the zero-shot setting.
Combining language and vision guidance: Language and vision guidance can be com-
bined to improve overall AC and AS performance. Tab. 2 summarises how the combination
is done under the different settings. Refer to supplementary for details.

4 Experiments
We conduct a series of experiments to evaluate the performance of FADE on AC and AS
under the zero-/few-shot regime. We also perform ablation experiments to study the impact
of each component in FADE.
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Anomaly Classification MVTec-AD VisA

Setup Method AUROC AUPR F1-max AUROC AUPR F1-max

0-shot WinCLIP 91.8±0.0 96.5±0.0 92.9±0.0 78.1±0.0 81.2±0.0 79.0±0.0

FADE (ours) 90.0±0.0 95.6±0.0 92.4±0.0 75.6±0.0 78.5±0.0 78.6±0.0

1-shot PatchCore 83.4±3.0 92.2±1.5 90.5±1.5 79.9±2.9 82.8±2.3 81.7±1.6
WinCLIP+ 93.1±2.0 96.5±0.9 93.7±1.1 83.8±4.0 85.1±4.0 83.1±1.7

FADE (ours) 93.9±0.7 96.8±0.3 94.8±0.2 86.7±2.0 87.9±1.5 84.7±0.8

2-shot PatchCore 86.3±3.3 93.8±1.7 92.0±1.5 81.6±4.0 84.8±3.2 82.5±1.8
WinCLIP+ 94.4±1.3 97.0±0.7 94.4±0.8 84.6±2.4 85.8±2.7 83.0±1.4

FADE (ours) 95.2±1.0 97.6±0.5 95.0±0.4 89.2±0.4 90.2±0.2 85.9±0.6

4-shot PatchCore 88.8±2.6 94.5±1.5 92.6±1.6 85.3±2.1 87.5±2.1 84.3±1.3
WinCLIP+ 95.2±1.3 97.3±0.6 94.7±0.8 87.3±1.8 88.8±1.8 84.2±1.6

FADE (ours) 96.3±0.4 98.1±0.2 95.5±0.4 90.7±0.3 91.9±0.4 87.0±0.2

Table 1: Comparison of AC performance on MVTec-AD and
VisA. We report the mean and standard deviation over 5 random
seeds. Bold indicates the best performance.

Task Shot Aggregation

AC 0-shot slang

k-shot slang + svis,k

AS 0-shot Mlang +Mvis,0

k-shot Mlang +Mvis,k

Table 2: Language and vi-
sion aggregation.

Patch
embeddings MVTec-AD VisA

CLIP 18.0 13.9
GEM 86.5 87.0

Table 3: CLIP vs GEM
embeddings for 0-shot AS
(pAUROC).

Datasets: All experiments are based on the MVTec-AD [1] and VisA [25] datasets which
are standard benchmarks for AC and AS. The datasets include a range of different objects
such as capsule and cashew. We only use the test split for evaluation which contains both
normal and anomalous images and their ground truth segmentation masks. The training split
is only used for sampling the reference images during few-shot evaluation.
Evaluation metrics: In accordance with prior works [10, 18], we report the following eval-
uation metrics. For AC, we report Area Under the Receiver Operating Characteristics curve
(AUROC), Area Under the Precision-Recall curve (AUPR) and F1-score at optimal thresh-
old (F1-max). For AS, we report pixel-wise AUROC (pAUROC), Per-Region Overlap (PRO)
and pixel-wise F1-max.
Implementation details: For CLIP, we use the OpenCLIP2 implementation of ViT-B/16+
(240×240) trained on LAION-400M [20]. For GEM, we use its official implementation3.

4.1 Zero-/Few-Shot Anomaly Classification and Segmentation
Tab. 1 compares the AC performance of FADE with two prior work, PatchCore [18] which
is an unsupervised anomaly detection method and WinCLIP [10] which is a state-of-the-art
zero-/few-shot anomaly detection method. For the zero-shot setting, FADE is a reproduction
of WinCLIP without any new additions. For the few-shot setting, FADE outperforms the
other methods on all metrics for both MVTec-AD and VisA with a larger improvement seen
on VisA. This shows that the vision-guided AS component of FADE is also beneficial to AC.

Tab. 4 compares the AS performance of FADE with PatchCore and WinCLIP. Under
zero-shot, FADE significantly outperforms other methods on all metrics for both MVTec-
AD and VisA. This is due to the various AS improvements of FADE which include the
multi-scale GEM embeddings, a better ChatGPT prompt ensemble and the zero-shot vision-
guidance using query image. Under few-shot, FADE performs similar to WinCLIP on
MVTec-AD and again outperforms WinCLIP on VisA which is the more challenging dataset.
This shows the advantage of FADE on more difficult images. It also shows that vanilla CLIP
patch embeddings can be used in place of WinCLIP embeddings for few-shot vision-guided

2https://github.com/mlfoundations/open_clip
3https://github.com/WalBouss/GEM
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Anomaly Segmentation MVTec-AD VisA

Setup Method pAUROC PRO F1-max pAUROC PRO F1-max

0-shot WinCLIP 85.1±0.0 64.6±0.0 31.7±0.0 79.6±0.0 56.8±0.0 14.8±0.0

FADE (ours) 89.6±0.0 84.5±0.0 39.8±0.0 91.5±0.0 79.3±0.0 16.7±0.0

1-shot PatchCore 92.0±1.0 79.7±2.0 50.4±2.1 95.4±0.6 80.5±2.5 38.0±1.9
WinCLIP+ 95.2±0.5 87.1±1.2 55.9±2.7 96.4±0.4 85.1±2.1 41.3±2.3

FADE (ours) 95.4±0.3 88.3±0.3 54.6±1.1 97.5±0.1 88.9±0.7 42.3±0.5

2-shot PatchCore 93.3±0.6 82.3±1.3 53.0±1.7 96.1±0.5 82.6±2.3 41.0±3.9
WinCLIP+ 96.0±0.3 88.4±0.9 58.4±1.7 96.8±0.3 86.2±1.4 43.5±3.3

FADE (ours) 95.8±0.2 88.9±0.2 55.8±1.0 97.8±0.1 89.8±0.4 44.4±0.9

4-shot PatchCore 94.3±0.5 84.3±1.6 55.0±1.9 96.8±0.3 84.9±1.4 43.9±3.1
WinCLIP+ 96.2±0.3 89.0±0.8 59.5±1.8 97.2±0.2 87.6±0.9 47.0±3.0

FADE (ours) 96.2±0.1 89.5±0.2 57.0±0.8 98.0±0.0 90.0±0.4 46.4±0.7

Table 4: Comparison of AS performance on MVTec-AD and
VisA. We report the mean and standard deviation over 5 random
seeds. Bold indicates the best performance.

AC (AUROC) # shots

slang svis 1 4

✓ ✗ 90.0 90.0
✗ ✓ 90.7 94.5

✓ ✓ 93.9 96.3

Table 5: Language- vs
vision-guided AC.

AS (pAUROC) # shots

Mlang Mvis 0 1 4

✓ ✗ 86.5 86.5 86.5
✗ ✓ 86.6 95.1 96.1

✓ ✓ 89.6 95.4 96.2

Table 6: Language- vs
vision-guided AS.

AS. Furthermore, FADE performance has a lower standard deviations across different ran-
dom runs. This indicates that FADE is more robust to the selection of different reference
images. Fig. 1 shows qualitative AS results for some objects. See supplementary for more.

Additional quantitative results comparing FADE and other state-of-the-art methods such
as AnomalyCLIP [24], AnomalyGPT [7] and APRIL-GAN [5] can be found in the supple-
mentary. FADE performs competitively even though these other methods require training
using additional anomaly detection datasets while FADE does not need any further training.

4.2 Ablation Study

GEM for zero-shot AS: Tab. 3 shows the impact of using CLIP vs GEM patch embeddings
for zero-shot language-guided AS. When CLIP embeddings are used, pAUROC is below
50.0 due to the problem of opposite visualisation between the normal and anomalous re-
gions. See supplementary for qualitative examples of the opposite visualisation when CLIP
embeddings are used while GEM embeddings fix this problem. More result comparison on
CLIP vs GEM embeddings for the different components of FADE are also shown in the sup-
plementary. The result motivates the choice of CLIP or GEM embeddings used in Fig. 2a-d.
Prompt ensemble for zero-shot AS: Tab. 7 shows the improvement on zero-shot language-
guided AS when we use additional text prompts generated automatically by ChatGPT. These
prompts capture more diverse descriptions related to the concept of anomaly and normality
which allow us to better use the CLIP model for improved AS. Interestingly, we note that the
ChatGPT prompts did not improve the zero-shot image-level AC performance.
Multi-scale aggregation: Tab. 8 and 9 show the AC and AS performance on MVTec-AD
when different input image scale/size is used. Since the patch size is constant (16 pixels), a
larger input size means that each patch is covering a finer scale and anomaly with smaller
size will be detected and vice versa. Multi-scale refers to taking the average outputs from the
three image scales and it has the best results at all k-shot settings since it allows for detecting
anomalies of different sizes. See supplementary for qualitative results.
Language vs vision guidance: Tab. 5 and 6 show the impact of language- vs vision-guided
AC and AS on MVTec-AD. Language guidance depends on text prompts while vision guid-
ance depends on the query (0-shot) or reference images (k-shot). The two types of guidance
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Prompt ensemble MVTec-AD VisA

WinCLIP prompts 83.7 74.0

WinCLIP +
ChatGPT prompts 86.5 87.0

Table 7: Prompt ablations on
language-guided AS (pAUROC).

AC (AUROC) # shots

Image scale 1 2 4

240 92.6 94.4 95.3
448 92.3 93.7 94.6
896 90.5 91.5 92.7

Multi-scale 93.9 95.2 96.3

Table 8: Image scale
ablations for AC.

AS (pAUROC) # shots

Image scale 0 1 2 4

240 87.6 93.4 94.0 94.5
448 87.4 93.5 94.0 94.5
896 84.7 91.3 91.7 92.1

Multi-scale 89.6 95.4 95.8 96.2

Table 9: Image scale abla-
tions for AS.

are complementary and improve the overall performance. See supplementary for qualitative
results.

5 Conclusion and Future Work

We present a new method FADE that utilises and adapts the CLIP model for zero-/few-
shot anomaly detection guided by language and vision. First, we improve language-guided
anomaly segmentation by using multi-scale GEM embeddings that are better aligned with
language than CLIP embeddings. This is further improved by using an LLM to generate a
new prompt ensemble that better captures the concept of anomaly and normality. Finally,
vision guidance from the query image further boosts the zero-shot anomaly detection perfor-
mance while vision guidance from the reference images extends the method to the few-shot
setting. On standard benchmarks, FADE performs competitively compared to other state-of-
the-art methods with the largest margin of improvement on zero-shot anomaly segmentation.

There are several points about FADE that are worth investigating as future work. First,
the use of text prompts generated by ChatGPT is not reproducible. While an alternative
open-source LLM can be used to set the seed to ensure reproducibility, it is also worth
investigating how sensitive the anomaly detection performance is to the different prompts
generated by the same LLM or across different LLMs.

Our experiment results show that for language-guided anomaly detection, GEM embed-
dings are better for zero-shot AS while CLIP embeddings are more suited for zero-shot AC.
On the other hand, for vision-guided anomaly detection, GEM embeddings are better for
zero-shot AS while CLIP embeddings are more suited for few-shot AS. A more compre-
hensive study is needed to gain a better understanding of when to use the GEM and CLIP
embeddings under the different detection pipelines and scenarios.

The vision-guided zero-shot AS constructs the memory bank from its own query image
patches. This works well at detecting anomalies in textural images (E.g. leather) that nor-
mally contain visually similar patches. However, this works less well and produces false
positives for anomaly detection in object images (E.g. transistor) whose patches differ to
a greater extent. Future work needs to explore other vision-guided zero-shot methods to
address this issue.
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