
SINGH ET AL.: ATLANTIS 1

ATLANTIS: A Framework for Automated
Targeted Language-guided Augmentation
Training for Robust Image Search
Supplementary materials
Singh et al . https://github.com/intherejeet/ATLANTIS

In this supplementary material, we provide additional details, ablations, and results re-
lated to our paper. In section A, we describe our main evaluation metric, Recall@K. In
section B, we introduce zero-shot and full-shot learning tasks in image retrieval. Section C
details the functions used in ATLANTIS’s Data Insight Generator (DIG) and Augmentation
Protocol Selector (APS) components. Section D presents the detailed experimental settings
for the Stanford Online Products (SOP) dataset [6]. Section E verifies the effectiveness of
ATLANTIS’s pipeline against conventional approaches and highlights the gains in synthetic
data augmentation efficiency. Section F provides experiments for the training feedback com-
ponent in ATLANTIS. In section G, we present detailed results and analysis for different
values of the diversity factor ∆ used in synthetic data filtering. Section H offers detailed
adversarial robustness evaluations, including results for adversarial attacks with larger noise
sizes. In section I, we present results for the case when novel classes were augmented by
ATLANTIS through synthetic data. Finally, in section J, we present processing speed and
computational complexity of ATLANTIS.

A Evaluation Metric: Recall@K
We utilise the standard evaluation metrics in DML: Recall@K (R@K) [2] with k= {1,2,4,8}
for the CUB-200-2011 [8] and Cars196 [4] data, and k = {1,10,100, 1000} for the SOP
data [6]. An increase in R@K indicates improved image retrieval performance of the trained
model.

A.1 Definition
For a given DML function f , let F k

q denote the set of the first k nearest neighbours of a
sample xq ∈ Xtest, defined as

F k
q = argmin

F⊂Xtest,|F |=k
∑

xn∈F
d (f (xq), f (xn)) (1)

Recall@K is then calculated as

R@K =
1
|Xtest| ∑

xq∈Xtest

{
1 if ∃ xi ∈ F k

q such that yi = yq

0 otherwise
(2)

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Oh~Song, Xiang, Jegelka, and Savarese} 2016

Citation
Citation
{Jegou, Douze, and Schmid} 2010

Citation
Citation
{Wah, Branson, Welinder, Perona, and Belongie} 2011

Citation
Citation
{Krause, Stark, Deng, and Fei-Fei} 2013

Citation
Citation
{Oh~Song, Xiang, Jegelka, and Savarese} 2016

2 SINGH ET AL.: ATLANTIS

This implies that Recall@K measures the proportion of cases where, for a given query xq, at
least one sample among its top k nearest neighbours xi belongs to the same class, i.e., yi = yq.

B Zero-Shot and Full-Shot Learning Settings
DML is designed to position semantically similar instances closer in the learned space than
dissimilar ones, facilitating its application to Zero-Shot Learning and Full-Shot Learning
settings. These settings enable models to generalise to unseen classes or to exploit the en-
tirety of the available training data. The following is an overview of Zero-Shot and Full-Shot
Learning within the DML context.

B.1 Zero-Shot Learning (ZSL)

ZSL enables the recognition of objects unseen during training by utilising semantic relation-
ships between categories, thereby bridging the semantic gap between seen and unseen classes
through visual-semantic embeddings and adaptive metric learning [3, 9]. In all our experi-
ments, we adhered to the standard benchmark 50:50 train-test split used in prior works [1].

B.2 Full-Shot Learning (FSL)

Contrary to ZSL, FSL utilises the same set of classes for both the training and test phases,
thus exploiting all labelled training data across known classes. This ensures comprehensive
class representation for detailed feature extraction and class distinction. In this context,
we adhered to the standard 50:50 train-test split, performing an intra-class, sample-wise
split to maintain a balanced class distribution across the training and testing sets with non-
overlapping samples.

C Details of the Functions Used in Different ATLANTIS
Components

C.1 Data Insight Generator (DIG) Functions

The functions FrequencyEval, ContextMaker, DomainInfer, ClassInfer, New-
ClassSearch, and InsightExtract each utilises a predefined objective to guide the
input large language model (LLM) in executing their respective tasks. The description of
each function is as follows:

C.1.1 FrequencyEval Function.

FrequencyEval analyses informative tokens, focusing on nouns and verbs after stop-
word removal, utilising heuristics and POS tagging to highlight key tokens. For example,
in the CUB-200-2011 data [8], it may identify bird species names, "perching," "swimming,"
and "flying" as among the top informative terms, offering insights into the subjects of the data
and their behaviours. The flexibility in the number of terms extracted, such as the top 50,
allows for customisation based on the data’s specificity, underscoring FrequencyEval’s
adaptability to diverse data types.

Citation
Citation
{Jiang, Wang, Shan, and Chen} 2019

Citation
Citation
{Xu, Cao, Yang, Yang, and Deng} 2019

Citation
Citation
{Ermolov, Mirvakhabova, Khrulkov, Sebe, and Oseledets} 2022

Citation
Citation
{Wah, Branson, Welinder, Perona, and Belongie} 2011

SINGH ET AL.: ATLANTIS 3

C.1.2 ContextMaker Function.

ContextMaker utilises outputs from FrequencyEval and metadata, employing an
LLM with a master prompt tailored to generate a nuanced data context. This integration
forms a cohesive overview, spotlighting domain-specific features for subsequent analysis.
An example master objective for the LLM looks like as follows:

"You are a sophisticated AI model...trained to discern
context and patterns...Generate a comprehensive
data context while identifying and including
information important for data retrieval tasks, domain
identification...quantify occurrences..."

C.1.3 DomainInfer Function.

Infers the domain distribution across the data using an LLM by leveraging the contextual
information generated by ContextMaker, identifying primary domains that encapsulate
the data’s semantic diversity. The LLM is defined with an objective like as follows:

"You are a sophisticated AI model...trained to discern
context and patterns...From the provided data context
information...Deduce key semantic domains from
informative tokens...list 3 key domains based on the
identified domain criteria..."

C.1.4 ClassInfer Function.

In supervised training with metadata labels, class distribution and imbalance analysis are
straightforward, using heuristics for class-wise frequency. Without explicit labels, this func-
tion utilizes C and an LLM to identify key classes and highlight those with few samples,
addressing class imbalances.

C.1.5 NewClassSearch Function.

The NewClassSearch function searches for novel classes N . Utilising an LLM and
providing it with Iclass andR as inputs, it generates new, practical classes that are not present
in the data but should be included based on data characteristics and the training objective.
An example LLM objective for the CUB-200-2011 data is structured as follows:

"You are an advanced Language Model with a
specialisation in ornithology, specifically in
the augmentation of bird species...with extensive
experience in large-scale image datas...From the
provided data context and class information...Generate
10 new, practical, yet previously not included
classes...These new species should be entirely
distinct from the input species in terms of visual
characteristics and features..."

The new classes for the CUB-200-2011 data were generated as follows:

4 SINGH ET AL.: ATLANTIS

Figure 1: An example output from DIG for a subset of CUB-200-2011 dataset.

"[African Grey Parrot, Atlantic Puffin, Bald Eagle,
Emperor Penguin, Golden Eagle, Harpy Eagle, Peacock,
Peregrine Falcon, Scarlet Macaw, Snowy Owl]"

Though the generation of new classes significantly diversifies the data augmentation,
it introduces complications in the ORDC filtering due to incompatibility, hence they are
required to be included without filtering, with the exception.

C.1.6 InsightExtract Function.

Compiles and formats all the information extracted in prior steps to make it compatible with
subsequent components’ inputs.

{Dinsight : {M : {Metadata Info.},
Idomain : {Domain Imabalance Info.},
Iclass : {Class Imabalance Info.},
N : {List of New Classes}}}

Figure 1 illustrates an example output from the DIG component for a subset of the CUB-
200-2011 dataset. The output includes a comprehensive data overview Dinsight, recommen-
dations for addressing class imbalance Iclass by augmenting images of the Laysan Albatross
and Baltimore Oriole, and domain imbalance recommendations Idomain to increase variety in
depicted scenes and activities. The class names "Baltimore Oriole" and "Laysan Albatross"
are identified, with specific augmentation suggestions aimed at enhancing dataset diversity
and addressing identified weaknesses.

C.2 Augmentation Protocol Selector (APS) Functions
C.2.1 AugmentationObjective.

This function leverages an LLM with a defined objective to develop a data augmentation
goal Oaug for a downstream LLM responsible for generating text descriptions of the target

SINGH ET AL.: ATLANTIS 5

Algorithm 1 Filtering Feedback and APS’s Protection from Infinite Loop
Require: Domain imbalance threshold τdomain, Class imbalance threshold τclass, Predefined

Exceptions Dexempt
Ensure: Alert list A for APS

1: Initialise A to an empty list
2: Initialise feedback_iteration to 1
3: if domain imbalance (filtered out fraction from a domain > τdomain) then
4: Add domain imbalance alert (with domain info and imbalance amount) to A
5: if class imbalance (filtered out fraction from a class > τclass) due to filtering then
6: Add class imbalance alert (with class info and imbalance amount) to A
7: for each alert a in A do
8: if a is in Dexempt then
9: Remove a from A

10: if A is empty then
11: Send no alert to APS
12: else
13: Send alert list A to APS

synthetic data. The defined objective is as follows:

"While serving as a selector for the image
retrieval synthetic data augmentation protocol, the
system...Defines an objective prompt for another
LLM tasked with generating text descriptions of
target synthetic images...based on the input insights
Dinsight..."

C.2.2 ReferenceDescription.

This function generates the reference description Dref of the target data, upon which the
augmentation objective Oaug is executed by an LLM. An example is as follows:

"The bird species is Bard Eagle. This class has no
image in our data hence the generated images should
be represent diverse domain scenarios as per the
characteristics of this bird...."

C.2.3 IncorporateFeedback.

This function incorporates feedback from data filtering and training performance during the
later stages of DML model training or fine-tuning. While training feedback is elaborated in
the main paper, the filtering feedback mechanism is described in algorithm 1.

Figure 2 illustrates an example of APS-guided generated text descriptions of the target
synthetic images in ATLANTIS for a subset of the CUB-200-2011 dataset. The text de-
scriptions are generated for two bird classes: Baltimore Oriole and Laysan Albatross. Each
description captures diverse activities and environments, such as a Baltimore Oriole plucking
insects from a city park oak tree and a Laysan Albatross performing a banking manoeuvre
under the setting sun. These targeted text descriptions are used to create synthetic images

6 SINGH ET AL.: ATLANTIS

Figure 2: An example of APS-guided generated text descriptions of the target synthetic
images in ATLANTIS for a subset of CUB-200-2011 dataset.

that address identified weaknesses in the original dataset, thereby enhancing data diversity
and model robustness.

D Experiments for SOP Dataset
The SOP data encompasses 22,634 classes across 12 product categories, totalling 120,053
eBay product images. It is partitioned into two subsets: the first 11,318 classes, comprising
59,551 images for training, and the subsequent 11,316 classes, with 60,502 images, desig-
nated for testing.

Given the significant training complexity and computational overhead associated with
synthetic data generation due to the extensive number of classes and samples, we have con-
strained our data augmentation through ATLANTIS to assess its efficacy. Although LLMs
for generating consistent product image descriptions—whether pertaining to real or fictitious
products—is relatively straightforward, we observed that current text-to-image models lack
the requisite precision to reliably produce product images across a broad range of scenarios.
Consequently, our reliance on well-know products to insure current text-to-image models
can correctly generate their images, was necessitated.

To address this, we exploited the DIG component within ATLANTIS to introduce eight
novel product categories: {Office Supplies, Cookware, Sunglasses, Foot
wear, Sports Equipment, Musical Instruments, Furni- ture, Tele-
visions}. For each category, we generated ten classes, and within each class, we created
20 captions, subsequently synthesising images for each. As a result, the original data was
augmented with 80 new classes and 1600 synthetic images, representing a modest increment
relative to the SOP data’s original size. Still, we found ATLANTIS yielding performance
improvements surpassing the current state-of-the-art.

E Verifying Effectiveness of ATLANTIS Pipeline
Though, ATLANTIS is the first to provide an automated and efficient solution for improving
image search models through targeted synthetic data augmentation, the framework compo-

SINGH ET AL.: ATLANTIS 7

nents like DIG can also be used by end users for understanding and analysing their data. To
confirm the superiority of ATLANTIS’s pipeline in performing targeted synthetic data aug-
mentation, we still compare our results with existing untargeted augmentation approaches to
justify the presence and effectiveness of the in-series components: DIG, APS, and ORDC.
We compare ATLANTIS against the naive-untargeted augmentation in input data with do-
main scarcity and class-imbalance scenarios.

E.1 Experimental Setting
We keep the experimental settings for the baseline (DINOH) and ATLANTIS (A-DINOH)
consistent with those described in Tables 1 and 2 of the main draft, focusing on input data
with domain scarcity and class imbalance scenarios, respectively. For the naive-untargeted
augmentation (NA-DINOH) case, we perform random augmentation of synthetic images
generated using the SDXL-1.5 32-bit model [7] (the same text-to-image model used in all
our other experiments) without considering domain scarcity and class imbalance in the orig-
inal data. We maintain the number of synthetic augmented images similar to that in AT-
LANTIS’s augmentation for both domain-scarce and class-imbalance settings to ensure a
fair comparison.

E.2 Ablation Results
We conducted a comprehensive ablation study to verify the effectiveness of the ATLANTIS
pipeline. Our experiments focused on evaluating the performance under domain scarcity and
class imbalance scenarios.

Domain Scarcity: Table 1 compares the performance of the baseline (DINOH without
any augmentation), naive-untargeted synthetic augmentation (NA-DINOH), and ATLANTIS
augmented (A-DINOH) models on CUB-200-2011 and Cars196 datasets. In scenarios with
domain scarcity, A-DINOH significantly outperforms both DINOH and NA-DINOH . For
instance, on the CUB-200-2011 dataset with the Φ domain, A-DINOH achieves R@1 of
68.4%, compared to 64.2% for DINOH and 65.1% for NA-DINOH . Similarly, in the Cars196
dataset, A-DINOH reaches R@1 of 75.4%, outperforming DINOH (70.3%) and NA-DINOH
(67.1%). The similar patterns were observed for the remaining cases with different do-
main scarcities. These results demonstrate that while naive-untargeted augmentation (NA-
DINOH) can provides some improvement over the baseline, it is not sufficient to address do-
main scarcity effectively. The targeted approach of ATLANTIS augmentation proves more
effective in resolving domain-specific deficiencies.

Class Imbalance: Table 2 illustrates the performance comparison under class imbalance
conditions. The A-DINOH consistently surpasses DINOH and NA-DINOH across various
metrics. For example, with κ = 50 classes in the CUB-200-2011 dataset, A-DINOH attains
an R@1 of 76.5%, whereas DINOH and NA-DINOH record 71.0% and 74.9% respectively.
For κ = 75 classes of the CUB-200-2011 data, A-DINOH achieves an R@1 of 76.0%, sig-
nificantly higher than 64.3% for DINOH and 73.3% for NA-DINOH . The simialar pattern
was also observed for the Cars196 data. These findings confirm that naive-untargeted aug-
mentation (NA-DINOH) fails to adequately address class imbalance, whereas the targeted
augmentation strategy of ATLANTIS effectively resolves these issues and leads to superior
performance.

Overall, the results clearly indicate that ATLANTIS provides substantial improvements
in both domain scarcity and class imbalance scenarios compared to the naive-untargeted
synthetic data augmentation, even with state-of-art diffusion models. This demonstrates
the necessity and effectiveness of our targeted synthetic data augmentation strategy, which

Citation
Citation
{Podell, English, Lacey, Blattmann, Dockhorn, M{ü}ller, Penna, and Rombach} 2023

8 SINGH ET AL.: ATLANTIS

Method PD AD ∆∗
CUB-200-2011 Data Cars196 Data

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

DINOH Φ - - 64.2 75.6 84.4 91.0 70.3 79.2 86.8 91.7
NA-DINOH Φ ⋆ ∞ 65.1 76.3 84.3 90.7 67.1 77.4 85.2 91.3
A-DINOH Φ Ψ,Ω 1 68.4 78.4 86.3 91.9 75.4 84.7 91.0 94.4

DINOH Ψ - 1 69.2 78.1 85.5 90.6 66.9 76.1 83.9 89.8
NA-DINOH Ψ ⋆ ∞ 69.6 79.4 87.1 92.5 67.8 78.0 85.3 90.8
A-DINOH Ψ Ω,Φ 1 72.8 81.6 88.3 93.4 75.8 84.2 90.4 94.5

DINOH Ω - 1 63.1 74.3 83.0 89.9 56.9 68.6 78.2 85.6
NA-DINOH Ω ⋆ ∞ 66.2 76.6 84.9 91.3 66.4 74.9 82.3 88.2
A-DINOH Ω Φ,Ψ 1 66.9 77.6 85.8 91.8 75.2 84.5 90.9 94.5

Table 1: Comparison of results in the baseline (DINOH), naive-untargeted synthetic aug-
mentation (NA-DINOH), and ATLANTIS augmentation (A-DINOH) settings under domain
scarcity. PD: domains in original training data, AD: super-set of augmented domains
based on class-specific characteristics, ∆∗: filtering hyperparameter for synthetic data before
augmentation (with ∞ indicating no ORDC filtering). Φ, Ψ, Ω: three activity-based do-
mains (‘Flying’, ‘Sitting’, ‘Swimming’) in the CUB-200-2011 [8]; three vehicle
body-type based domains (‘Sedan’, ‘SUV-Crossover’, ‘Performance Sport
or Convertible’) in the Cars196 data [4].

identifies and addresses weaknesses in the training data using in-series components: DIG,
APS, and ORDC, that naive augmentation methods overlook.

E.3 Efficiency Gains Against Conventional Augmentation Techniques
In this subsection, we compare the efficiency gains of our ATLANTIS framework against
the conventional naive-untargeted augmentation approaches.

The naive-untargeted augmentation methods introduces synthetic data without specific
objectives, thereby adding substantial noise and redundancy to the training dataset. Let Xn
represent the naive synthetic dataset, which is generated by augmenting the original dataset
Xo with α synthetic instances per real instance. The total size of the augmented dataset Xn
can be expressed as:

|Xn|= (1+α)|Xo| (3)

Given that naive augmentation does not target specific weaknesses, it requires a large
number of synthetic generations to achieve comprehensive coverage of the data space. As-
suming p is the probability of generating a useful instance that addresses a specific weakness,
the expected number of synthetic instances E[Xuse f ul] needed to effectively cover the weak-
nesses is given by:

E[Xuse f ul] =
1
p

(4)

In contrast, our ATLANTIS framework systematically identifies and targets weaknesses
using the DIG and APS. By directly addressing these weaknesses, ATLANTIS avoids un-
necessary data generation, thus significantly reducing the required synthetic data. Let Xt
represent the targeted synthetic dataset. The total size of the targeted augmented dataset Xt
can be expressed as:

Citation
Citation
{Wah, Branson, Welinder, Perona, and Belongie} 2011

Citation
Citation
{Krause, Stark, Deng, and Fei-Fei} 2013

SINGH ET AL.: ATLANTIS 9

Method κ ZSL ∆∗
CUB-200-2011 Data Cars196 Data

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

DINOH 50 ✓ - 71.0 81.5 88.5 93.6 75.0 83.5 90.0 94.4
NA-DINOH 50 ✓ ∞ 74.9 83.9 90.1 94.5 76.5 85.3 90.8 94.5
A-DINOH 50 ✓ 1 76.5 84.8 90.5 94.7 82.6 89.2 93.8 96.5

DINOH 75 ✓ - 64.3 75.7 84.7 90.9 61.8 73.0 81.6 88.4
NA-DINOH 75 ✓ ∞ 73.3 82.7 89.4 94.0 71.6 81.0 87.7 92.7
A-DINOH 75 ✓ 1 76.0 84.3 90.3 94.1 80.6 88.1 92.9 95.7

Table 2: Comparison of results in the baseline Hyperbolic-DINO model [1] (DINOH),
naive-untargeted synthetic augmentation (NA-DINOH), and ATLANTIS augmentation (A-
DINOH) settings under class-imbalance scenario. κ: number of classes in the original data
with samples restricted to two (by following the same methodology as in the paper), ZSL:
zero-shot learning setting, ∆∗: filtering hyperparameter for synthetic data before augmenta-
tion (with ∞ indicating no ORDC filtering).

|Xt |= (1+β)|Xo| (5)

where β ≪ α due to the targeted nature of the augmentation. The efficiency gain η of
our framework compared to the naive approach can be quantified by the ratio of the required
synthetic instances:

η =
E[Xn]

E[Xt]
(6)

Given that the targeted framework directly addresses weaknesses with a high probability
q (where q ≈ 1), the expected number of synthetic instances E[Xtargeted] required is signifi-
cantly lower:

E[Xtargeted] =
1
q
≈ 1 (7)

Substituting these values, the efficiency gain η can be expressed as:

η =
1/p
1/q

=
q
p

(8)

As q ≈ 1 and p≪ 1 in naive augmentation, η becomes significantly greater than 1,
demonstrating substantial efficiency gains. This efficiency is reflected in both reduced com-
putational costs and improved model performance, as ATLANTIS generates only the neces-
sary synthetic data, directly aligned with the augmentation objectives, thereby enhancing the
robustness and generalisation of the CBIR models.

To illustrate, if p = 0.1 (naive method’s probability of useful instance generation) and
q = 0.9 (our framework’s targeted generation probability), then:

η =
0.9
0.1

= 9 (9)

This indicates that our ATLANTIS framework is 9 times more efficient in generating
useful synthetic data compared to the naive-untargeted approach, highlighting the significant
performance and efficiency benefits of our targeted augmentation strategy.

Citation
Citation
{Ermolov, Mirvakhabova, Khrulkov, Sebe, and Oseledets} 2022

10 SINGH ET AL.: ATLANTIS

Algorithm 2 Training Feedback Generation
Require: Set of trained candidate DML modelsM, evaluation function Eval, threshold τ ,

weak-class hyper-parameter k.
Ensure: Best model M∗, Set of underperforming classes Cpoor

1: M∗← argmaxMi∈MEval(Mi)
2: Initialise Cpoor to an empty set
3: for i← 1 to k do
4: cpoor← argminc∈C Eval(M

∗,c)
5: if Eval(M∗,cpoor)< τ then
6: Cpoor←Cpoor∪{cpoor}
7: Send Tfeedback containing Cpoor to APS for the targeted additional data generation.

F Training Feedback Component
The Training Feedback module Θt f : (Xtrain,M∗,Eval)→ Tfeedback, as described in algo-
rithm 2, evaluates class-wise R@1 scores usingM∗ on the training set to identify a prede-
fined number of training classes with the worst performance. In cases where multiple models
{M0,M1, . . .} ∈M are being trained for data cleaned with a set of ∆ values, it first iden-
tifies the best-performing model before initiating the feedback generation process. These
insights are crucial for the APS to recalibrate the synthetic data generation process, targeting
classes that require further augmentation.

F.1 Effectiveness of the Training Feedback Component
In most scenarios, we found that while fine-tuning CBIR models, there was no significant
requirement for the training feedback loop due to the substantial pre-training of current ViT
models used for fine-tuning. However, in cases where a model is trained from scratch, it
becomes crucial to focus on training classes with low performance. In such instances, our
training feedback loop provides valuable information to the APS to generate additional data
and enhance data diversity for these struggling training classes.

Although the performance gains achieved through this training feedback loop during the
fine-tuning phase were marginal in the experiments prompting us to transfer the results here,
we still verified its effectiveness. Table 3 presents results for the case where the training
feedback loop was used alongside other components of the ATLANTIS framework. Even
with the inclusion of the training feedback loop, our framework outperformed the state-of-
the-art baseline for the DINO model marginally.

For this ablation, we restricted the generations to only the classes identified by the train-
ing feedback loop, effectively isolating the impact of this component. Clearly, from the
results, we can see that the feedback loop mechanism can be beneficial in further improving
performance by directing the synthetic data generation process to specifically address classes
with low training performance.

G Results for Filtering with Different ∆ Values
Table 4 presents the outcomes of our analysis on the impact of varying ∆ values in ORDC
filtering across the synthetic CUB-200-2011 [8] and Cars196 [4] datasets. The datasets
were with standard balanced class and domain distributions, hence positioning this as the
most challenging scenario for ATLANTIS as the scope for improvement through synthetic

Citation
Citation
{Wah, Branson, Welinder, Perona, and Belongie} 2011

Citation
Citation
{Krause, Stark, Deng, and Fei-Fei} 2013

SINGH ET AL.: ATLANTIS 11

Method Tf eedback R@1 R@2 R@4 R@8

DINOH ✗ 78.3 86.0 91.2 94.7
DINOH ✓ 78.8 86.7 92.2 95.4

Table 3: A comparison of ZSL results on the CUB-200-2011 data [8] for the DINOH [1]
model with and without the training feedback loop component. Tf eedback indicates the pres-
ence (✓) or absence (✗) of the training feedback loop. The results show marginal improve-
ments in recall scores when the training feedback loop is used, demonstrating its effective-
ness in enhancing CBIR model performance by focusing on low-performing training classes.
Best R@k results are highlighted in bold.

Data Method ∆
DINOH ViTH

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

Xcub

Baseline - 78.3 86.0 91.2 94.7 84.0 90.2 94.2 96.4
Ours ∞ 77.7 85.5 90.5 94.9 82.9 89.8 94.0 96.4
Ours 3 78.0 85.7 90.7 94.9 82.9 89.8 94.0 96.2
Ours 1.5 78.2 86.0 91.5 94.9 83.4 90.1 94.1 96.4
Ours 1 79.1 87.1 92.2 95.5 84.1 90.3 96.5 97.9
Ours 0.9 78.2 86.6 91.7 95.1 83.8 90.1 96.2 97.6

Xcars

Baseline - 86.0 91.9 95.2 97.2 82.7 89.7 93.9 96.2
Ours ∞ 85.2 91.1 94.8 96.8 82.6 89.3 93.0 95.8
Ours 5 86.1 91.7 95.1 97.3 82.8 89.5 93.5 96.6
Ours 1.5 86.8 92.4 95.5 97.3 83.4 90.0 94.0 96.5
Ours 1.2 86.2 91.8 95.1 97.3 82.9 89.6 93.5 96.5
Ours 1 85.7 91.5 95.1 97.2 82.7 89.4 93.1 95.9

Table 4: Results for varying ∆ in ORDC filtering on the augmented data with the standard
balanced benchmark CUB-200-2011 [8] and Cars196 [4] datasets, showing optimal diversity
at ∆ = 1 for CUB-200-2011 and ∆ = 1.5 for Cars196 with ATLANTIS, DINOH , and ViTH
architectures.

data augmentation in the available training set was minimal. Optimal diversity and removal
of outliers were achieved at ∆ = 1 for CUB-200-2011 and ∆ = 1.5 for Cars196, utilising
ATLANTIS, DINOH , and ViTH architectures. This underscores the strategic efficacy of
ATLANTIS in enhancing dataset quality thus training, even under stringent conditions that
limit the conventional techniques for the image retrieval performance gains.

Notably, our framework outperforms the state-of-the-art baseline [1] across various ∆

values, especially showing superior performance at higher K values of R@K scores. This
indicates that while ATLANTIS boosts recall, it slightly reduces precision if the noise is
not strictly filtered in the generated data. Furthermore, too small ∆ values introduce data
imbalance due to stronger filtering constraints, hence lowering performance. However, the
Filtering Feedback aims to counterbalance such effects resulted by filtering. Despite these
measures, some imbalance may persist because of predefined stopping criteria, marginally
affecting overall effectiveness. This detailed examination highlights the importance of care-
ful parameter tuning to maximise performance, demonstrating our framework’s adeptness at
navigating complex data characteristics.

Citation
Citation
{Wah, Branson, Welinder, Perona, and Belongie} 2011

Citation
Citation
{Ermolov, Mirvakhabova, Khrulkov, Sebe, and Oseledets} 2022

Citation
Citation
{Wah, Branson, Welinder, Perona, and Belongie} 2011

Citation
Citation
{Krause, Stark, Deng, and Fei-Fei} 2013

Citation
Citation
{Ermolov, Mirvakhabova, Khrulkov, Sebe, and Oseledets} 2022

12 SINGH ET AL.: ATLANTIS

H Adversarial Robustness Gains Across Datasets and
Attack Strengths

We evaluate ATLANTIS’s adversarial robustness on CUB-200-2011 and Cars196 datasets
against embedding-space white-box PGD attacks [5]. We measure performance across dif-
ferent attack gradients steps (s ∈ 1,10) and noise sizes (ε ∈ 0.05,0.1,0.5). Table 5 expands
on this by including results for larger noise sizes not discussed in the main paper, highlight-
ing ATLANTIS’s effectiveness mainly against subtle noise attacks. Comparisons between
original DINO and RR-DINO models in ZSL and FSL settings reveal ATLANTIS’s robust-
ness improvements in standard imperceptible noise attack scenarios but show variability with
larger noise sizes. This suggests a stronger defense against imperceptible noise, pointing to
potential areas for future improvement.

Data Training
Mode

Steps ε R@1
Baseline

R@1 Gain

X cub
o ZSL 1 0.05 62.90 1.27
X cub

o ZSL 1 0.10 54.30 0.37
X cub

o ZSL 1 0.50 28.60 -5.24
X cub

o ZSL 10 0.05 63.40 0.79
X cub

o ZSL 10 0.10 56.30 1.60
X cub

o ZSL 10 0.50 31.60 2.85
X cub

s ZSL 1 0.05 66.30 -0.45
X cub

s ZSL 1 0.10 58.00 0.17
X cub

s ZSL 1 0.50 36.00 -4.72
X cub

s ZSL 10 0.05 66.50 1.35
X cub

s ZSL 10 0.10 60.90 -1.31
X cub

s ZSL 10 0.50 37.90 1.06
X cub

o FSL 1 0.05 61.60 3.73
X cub

o FSL 1 0.10 52.60 1.71
X cub

o FSL 1 0.50 26.90 -6.69
X cub

o FSL 10 0.05 63.60 1.73
X cub

o FSL 10 0.10 55.20 3.80
X cub

o FSL 10 0.50 28.90 4.50
X cub

s FSL 1 0.05 79.50 0.63
X cub

s FSL 1 0.10 73.70 0.68
X cub

s FSL 1 0.50 54.70 -2.38
X cub

s FSL 10 0.05 79.30 1.77
X cub

s FSL 10 0.10 74.90 1.34
X cub

s FSL 10 0.50 57.00 -1.58
X cars

o ZSL 1 0.05 67.67 0.40
X cars

o ZSL 1 0.10 55.21 -0.83
X cars

o ZSL 1 0.50 29.87 -2.41
X cars

o ZSL 10 0.05 68.85 -1.76
X cars

o ZSL 10 0.10 59.70 2.24
X cars

o ZSL 10 0.50 33.24 -4.27
X cars

s ZSL 1 0.05 56.98 8.88

Continued on next page

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2017

SINGH ET AL.: ATLANTIS 13

Table 5 continued from previous page
Data Training

Mode
Steps ε R@1

Baseline
R@1 Gain

X cars
s ZSL 1 0.10 46.99 7.38
X cars

s ZSL 1 0.50 17.60 14.43
X cars

s ZSL 10 0.05 56.61 9.43
X cars

s ZSL 10 0.10 47.87 12.03
X cars

s ZSL 10 0.50 26.58 6.02
X cars

o FSL 1 0.05 60.50 0.99
X cars

o FSL 1 0.10 47.29 1.54
X cars

o FSL 1 0.50 18.77 2.56
X cars

o FSL 10 0.05 61.91 0.11
X cars

o FSL 10 0.10 51.85 2.91
X cars

o FSL 10 0.50 22.92 -4.28
X cars

s FSL 1 0.05 54.89 15.30
X cars

s FSL 1 0.10 44.45 17.14
X cars

s FSL 1 0.50 13.40 29.40
X cars

s FSL 10 0.05 54.37 16.20
X cars

s FSL 10 0.10 45.58 18.85
X cars

s FSL 10 0.50 23.50 17.62
Table 5: Adversarial Robustness Gains Across Datasets and Various
Attack Strengths: This table extends the results covering the original
and synthetic test sets of the CUB-200-2011 (X cub

o , X cub
s) and Cars196

(X cars
o , X cars

s) datasets to include the impact of our framework against
white-box embedding-space PGD attacks of varying intensities on adver-
sarial R@1. Robustness across different numbers of attack gradient steps
(s ∈ {1,10}) and adversarial noise size bounds (ε ∈ {0.05,0.1,0.5}),
expressed as a fraction of the input image pixel value range, is mea-
sured. Additionally, the table explores ATLANTIS’s adversarial robust-
ness against larger adversarial noise sizes ε not detailed in the paper,
revealing inconsistent robustness gains for such attack strengths. This
underscores ATLANTIS’s efficacy primarily against imperceptible noise
attacks. Results are presented for both ZSL and FSL learning settings,
comparing the original DINO and our RR-DINO models, with further
insights into the framework’s behaviour under more extreme noise con-
ditions not covered in the main paper’s figures.

I Results for Novel Class Augmentation

Table 6 presents a comparison of ZSL results when new classes introduced through syn-
thetic data augmentation by ATLANTIS had overlap with the original CUB-200-2011 train-
ing classes versus the case where completely novel classes (Nnovel) were introduced. These
novel classes are neither part of the training nor test classes of the original CUB-200-2011
data. For a fair evaluation, we ensured that the new augmented classes (AC) did not in-
clude any test classes from the CUB-200-2011 data. Ctrain represents the classes in the
available original training data, Ntrain represents novel classes introduced by ATLANTIS
that are within the scope of the original CUB-200-2011 training data, and Nnovel represents

14 SINGH ET AL.: ATLANTIS

Case Ctrain
AC A-DINOH A-ViTH

Ntrain Nnovel R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

A 25 75 - 73.14 82.39 89.30 93.55 83.17 90.24 93.77 96.30
A∗ 25 75 10 73.40 82.53 89.30 93.70 83.36 90.48 93.82 96.24
A 25 175 - 77.48 85.99 91.27 94.62 83.29 90.07 94.04 96.40
A∗ 25 175 10 77.58 85.82 91.29 94.58 83.46 89.99 93.92 96.44

Table 6: A comparison of ZSL results when new classes introduced through synthetic data
augmentation by ATLANTIS had overlap with the original CUB-200-2011 training classes
(indicating APS may have used prior knowledge of public data) versus the case where com-
pletely novel classes (Nnovel) were introduced, which are neither part of the training nor test
classes of the original CUB-200-2011 data. For a fair evaluation, we ensured that the new
augmented classes (AC) did not include any test classes from the CUB-200-2011 data. Ctrain
represents the classes in the available original training data, Ntrain represents novel classes
introduced by ATLANTIS that are not part of the available training data but are within the
scope of the original CUB-200-2011 training data, and Nnovel represents classes that were
neither part of the available training data (Ntrain) nor part of the original CUB-200-2011
training or test classes. The 10 novel classes introduced are African Grey Parrot, Atlantic
Puffin, Bald Eagle, Emperor Penguin, Golden Eagle, Harpy Eagle, Peacock, Peregrine Fal-
con, Scarlet Macaw, and Snowy Owl, which were non-existent in the original CUB-200-2011
data. Case A represents training using ATLANTIS when the new augmented classes over-
lapped with the original training class set, and case A∗ represents training with ATLANTIS
where, in addition to Ntrain, completely novel classes Nnovel were also augmented. Best
R@k results are highlighted in bold.

classes that were neither part of the available training data (Ntrain) nor part of the original
CUB-200-2011 training or test classes. The 10 novel classes introduced are African Grey
Parrot, Atlantic Puffin, Bald Eagle, Emperor Penguin, Golden Eagle, Harpy Eagle, Peacock,
Peregrine Falcon, Scarlet Macaw, and Snowy Owl, which were non-existent in the original
CUB-200-2011 data.

The results in Table 6 illustrate the versatility of our framework, demonstrating its ability
to introduce completely novel classes that are not even part of the original test or training
data. This showcases the potential of ATLANTIS in scenarios where the available data has
very few class identities, allowing it to significantly expand the diversity of class identi-
ties. This expansion benefits the user data by providing a richer and more varied dataset,
ultimately leading to better-trained models.

In cases where our framework introduced novel classes, we observed slight improve-
ments in performance metrics. For instance, introducing just 10 completely novel classes
(Nnovel) resulted in modest gains in recall metrics across both A-DINOH and A-ViTH mod-
els. Specifically, in the case A∗ where 10 novel classes were added to the 75 augmented
classes, R@1 for A-DINOH improved from 73.14 to 73.40, and for A-ViTH from 83.17 to
83.36. Similarly, in the case of expanding from 175 augmented classes, adding 10 novel
classes resulted in R@1 improvements from 77.48 to 77.58 for A-DINOH and from 83.29 to
83.46 for A-ViTH .

These results highlight the capability of ATLANTIS to generate and incorporate novel
classes, enhancing the robustness and generalisation of models trained on such enriched
datasets. The framework’s ability to systematically identify and augment novel class iden-
tities proves valuable in improving the overall performance of CBIR models, particularly in

SINGH ET AL.: ATLANTIS 15

datasets with limited class diversity.

J Processing Speed and Computational Complexity of
ATLANTIS

J.1 Processing Speed of ATLANTIS
The processing speed of the ATLANTIS framework can vary based on the complexity of
the data, the specific models used, and the computational resources available. However,
ATLANTIS is designed to optimize the augmentation process by leveraging LLMs and pre-
trained models for efficiency. Below is a detailed estimate of the processing speed and com-
putational complexity of generating synthetic data within ATLANTIS.

J.2 Detailed Estimate of Synthetic Data Generation Time
The framework operates with linear computational and memory complexity across its com-
ponents. The approximate equation estimating the time required to generate synthetic data
(excluding the final training part) is as follows:

Ttotal(No,Ns) = γ +(k f + ki) ·No + ka +(kd + ks + ko) ·Ns

where:

• No represents the number of original images.

• Ns represents the number of synthetic images to be generated.

• γ is the VRAM load time for all models and components of ATLANTIS, assuming
model weights are already downloaded locally.

• k f is the time required to generate a text description for one original image.

• ki is the time required to process the text description of one original image by the DIG.

• ka is the time required to process insights and feedbacks by the APS.

• kd is the time required to generate a text description for one target synthetic image by
an LLM while executing APS-defined objectives.

• ks is the time required to generate one target synthetic image from a given text descrip-
tion.

• ko is the time required to process a single synthetic image by the ORDC.

J.3 Parameter Values and Example Calculation
In the present setting (using an A100 80GB GPU, standard Azure SSD, and server-grade
Intel Xeon CPU), the parameter values are approximately:

• γ = 60 seconds

• k f = 2 seconds

16 SINGH ET AL.: ATLANTIS

• ki = 0.1 seconds

• ka = 5 seconds

• kd = 3 seconds

• ks = 30 seconds (for SDXL 32bit, 8 seconds for SDXL Turbo)

• ko = 2 seconds

Using these values, the total time required to generate synthetic data for 1000 original
images and 2000 synthetic images is:

Ttotal(1000,2000) = 65+2.1 ·1000+35 ·2000

Ttotal(1000,2000) = 65+2100+70000

Ttotal(1000,2000) = 72165 seconds

This translates to approximately 20 hours.

J.4 Training Time
For the training part, our experiments show that the convergence time for ATLANTIS scales
lower than linear complexity. For example, when using the CUB200 dataset, ATLANTIS
required 30-40 more iterations than the base 100 epochs to reach convergence. The exact
values may vary depending on the specific case.

By considering these computational requirements and processing times, we can better
plan and optimize their use of the ATLANTIS framework for synthetic data generation and
model training.

References
[1] Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Os-

eledets. Hyperbolic vision transformers: Combining improvements in metric learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 7409–7419, 2022.

[2] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
neighbor search. IEEE transactions on pattern analysis and machine intelligence, 33
(1):117–128, 2010.

[3] Huajie Jiang, Ruiping Wang, Shiguang Shan, and Xilin Chen. Adaptive metric learning
for zero-shot recognition. IEEE Signal Processing Letters, 26(9):1270–1274, 2019.

[4] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations
for fine-grained categorization. In Proceedings of the IEEE international conference on
computer vision workshops, pages 554–561, 2013.

[5] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

SINGH ET AL.: ATLANTIS 17

[6] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learn-
ing via lifted structured feature embedding. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4004–4012, 2016.

[7] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas
Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for
high-resolution image synthesis. arXiv preprint arXiv:2307.01952, 2023.

[8] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011.

[9] Xinyi Xu, Huanhuan Cao, Yanhua Yang, Erkun Yang, and Cheng Deng. Zero-shot
metric learning. In IJCAI, pages 3996–4002, 2019.

