

ATLANTIS: A Framework for Automated Targeted Language-

guided Augmentation Training for Robust Image Search

Inderjeet Singh*(inderjeet.singh@fujitsu.com), Roman Vainshtein, Alon Zolfi, Asaf Shabtai, Tu Bui, Jonathan Brokman, Omer Hofman, Fumiyoshi Kasahara, Kentaro Tsuji, Hisashi Kojima

INTRODUCTION

Content-Based Image Retrieval

• Content-Based Image Retrieval (CBIR) is a technique for finding images in a database based on their visual content by using deep metric learning (DML).

Challenges in CBIR Systems

- Generalization issues [Neyshabur+, 2017]: due to domain gaps and class imbalances.
- Overfitting [Neyshabur+, 2017]
- Susceptibility to adversarial attacks [Xie+, 2020].

Available training data flipping, and colour transformation - based augmentation: less control over content distribution.

Generative augmentation: improved content distribution.

Existing Data Augmentation Works

- Traditional Image Augmentation [Perez+, 2017; Shorten+, 2019]: cropping, rotation, flipping, etc. However, they are limited in their ability to change the content distribution.
- Generative Adversarial Networks (GANs) [Anotoniou+, 2017; Bowles+ 2018]. Computationally expensive, difficult to scale, and less control over generations.

ATLANTIS FRAMEWORK

ATLANTIS employs a multimodal approach for targeted synthetic data augmentation that directly identifies weaknesses and gaps in the available training data and addresses them efficiently.

Semantic noise from SDXL for 'Chuck-will's-Widow' bird species.

An overview of the ATLANTIS

KEY RESULTS

Data	PD	DINO_H			AD	Δ^*		$\mathbf{A}\text{-}\mathbf{DINO}_H$	
		R@1	R@2	R@4		_	R@1	R@2	R@4
\mathcal{X}_{cub}	A_f	64.2	75.6	84.4	A_s,A_a	1	68.4	78.4	86.3
	$A_{\mathcal{S}}^{'}$	69.2	78.1	85.5		1	72.8	81.6	88.3
	A_a	63.1	74.3	83.0	A_f, A_s	1	66.9	77.6	85.8
\mathcal{X}_{cars}	B_{s}	70.3	79.2	86.8	B_c, B_p	1.5	75.4	84.7	91.0
	B_c	66.9	76.1	83.9	1	1.5	75.8	84.2	90.4
	$B_{\mathcal{D}}$	56.9	68.6	78.2	B_s, B_c	1.5	75.2	84.5	90.9
				ViT_H				$\mathbf{A}\text{-}\mathbf{ViT}_H$	
\mathcal{X}_{cub}	A_f	78.3	87.0	92.4	A_s, A_a	1	79.7	88.0	92.9
	,	79.1	87.5	92.4	A_a, A_f		81.7	88.4	93.1
		77.7		92.2	A_f, A_s	1	79.9	87.5	92.8
\mathcal{X}_{cars}	B_s	65.1	76.2	84.6	B_c, B_p	1.5	72.8	82.5	89.7
	B_c	62.7	73.3	81.7	B_p, B_s		74.1	82.8	90.0
	B_n	51.0	63.1	73.8	B_{c} , B_{c}		71.1	81.6	89.2

 Improvements under all domain-scarce and classimbalanced (particularly zero-shot) scenarios.

CONCLUSION & FUTURE WORK

ATLANTIS, through the targeted synthetic data augmentation in CBIR, achieved:

- Improved generalization in data-scarce scenarios.
- Enhanced adversarial robustness, particularly against attacks with imperceptible noise levels.
- Competitive performance on standard CBIR benchmarks.

Future Work:

- Improving computational efficiency and stability.
- Enhanced ethical considerations: Future development could integrate a blacklist of objects and domains into ORDC for more controllable synthesis.

Code and related data is available at: