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Abstract

Recent image search or content-based image retrieval (CBIR) systems rely on deep
metric learning (DML) for extracting representative image features; however, their gen-
eralisation is limited by the dependency on large volumes of high-quality, diverse and
unbiased training data. We introduce ATLANTIS, a framework with a novel methodol-
ogy that automatically identifies training data deficiencies and then performs targeted and
controlled synthetic data augmentation. Our framework comprises a Data Insight Gen-
erator for extracting contextual insights and the deficiencies from the existing training
data, an Augmentation Protocol Selector to define dynamic, context-aware augmentation
strategies, and an Outlier Removal and Diversity Control module to control the synthetic
data’s semantic coherence and diversity. ATLANTIS leverages image-to-text transfor-
mations, large language models, and text-to-image synthesis to iteratively generate and
refine synthetic data while ensuring alignment with the original data and augmenting
training data diversity in a controlled manner. Our comprehensive empirical evaluations
reveal that ATLANTIS surpasses state-of-art in challenging domain-scarce and class-
imbalanced data scenarios while also enhancing adversarial robustness, thus underscor-
ing the generalisation gains. ATLANTIS also sets new benchmarks in standard balanced
DML tasks, thereby establishing it as a robust and scalable framework for CBIR.

1 Introduction
Content-Based Image Retrieval (CBIR), also called image search systems, increasingly rely
on Deep Metric Learning (DML) to deliver meaningful representations for image retrieval,
using distance metrics optimised by triplet, contrastive or angular losses [4, 15, 29, 35].
However, generalization remains a critical challenge, as DML models are not only prone to
overfitting when trained or finetuned on limited datasets [21] but also more susceptible to
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adversarial attacks [38]. To address this, prior studies perform synthetic data augmentation
with traditional transformations [25, 31] or GAN-based generative models [2, 3]; yet the
former is unable to adjust the content distribution of the dataset while the latter is computa-
tionally expensive and has limited scalability.

We introduce ATLANTIS, a framework designed to enhance DML model generalizabil-
ity via automatic and controllable synthetic data augmentation. ATLANTIS first identifies
available training data insufficiencies then generated tailored synthetic data for the subse-
quent DML model training. Uniquely, data insufficiencies are analysed in the text space
to leverage large language models (LLMs) as virtual agents, while also leveraging state-
of-art image-to-text models and metadata analysis to detect class and domain imbalance.
These data insights are then transformed into text prompts using LLMs, before being fed to
text-to-image models for synthetic image generation. The whole pipeline is conducted au-
tomatically, with feedback loop from DML training and filtering mechanism being enforced
after the synthesised images.

The contributions of ATLANTIS are four-folds:

• We introduce ATLANTIS, a unified framework that automatically identifies and aug-
ments context-dependent, potentially missing training information while also tracking
weaknesses in training. This enables the efficient generation and augmentation of only
relevant training data and patching weak classes during training, resulting in improved
clean data performance and adversarial robustness in the trained CBIR models.

• To the best of our knowledge, ATLANTIS is the first to effectively leverages foun-
dational language and vision models to enhance CBIR models, while also facilitating
easy integration with existing methods.

• We present a suite of components to identify data requirements, define generation
objectives, and filters the generated synthetic data while controlling data diversity.

• ATLANTIS significantly outperforms current state-of-art in domain-scarce, class im-
balance, adversarial, and even on standard benchmarks 1.

2 Related Work
Traditional Image Transformations. Traditional image augmentation techniques have
been instrumental in enhancing the performance of computer vision models by introduc-
ing variations through manually crafted transformations such as cropping, rotation, and flip-
ping [25, 31]. However, Goodfellow et al. [11] and Grill et al. [12] highlight the limitations
in performance gains when employing a non-selective augmentation strategy, indicating the
need for more sophisticated methods.

Synthetic Data Augmentation. Generative approaches, particularly Generative Adver-
sarial Networks (GANs), have been leveraged to create synthetic data for various tasks,
including image-to-image translation and data augmentation for domain-specific applica-
tions [2, 3]. Pretrained language models extend these capabilities to text-based tasks, en-
abling sophisticated text augmentation processes [7, 39]. Automated augmentation strategies
like AutoAugment and RandAugment have shown promise, they generally remain within the

1Source code and related data are available at https://github.com/intherejeet/ATLANTIS.
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Figure 1: An overview of the ATLANTIS outlining its key integrated components: DIG,
APS, ORDC filtering, and the feedback mechanisms, resulting selective and controlled syn-
thetic data augmentation for enhanced generalizability in CBIR systems.

confines of traditional augmentation paradigms and do not exploit the rich representational
power of multimodal data [5, 6].

Multimodal data augmentation efforts, such as [10, 14], leverage the intra- and cross-
modal relation between training samples to generate new augmentations at raw inputs [14]
or feature level [10]. These methods often employ simple augmenting strategies such as
retrieval-mixing, image interpolation and text concatenation mainly for robustness training
instead of addressing the data bias and class imbalance problems. Recently, Yin et al. [41]
uses LLM and image diffusion to produce richer synthetic data but still face limitations in
controllability, flexibility, and lack an automated mechanism.

These observed limitations have led us to the development of ATLANTIS for CBIR.
The absence of a multimodal solution that combines image-to-text, LLMs with prompt en-
gineering, and text-to-image models for controlled and targeted synthetic data augmentation
in training and finetuning is a significant gap that ATLANTIS aims to fill. ATLANTIS sets
a new precedent as the first to address this in the CBIR domain, while tackling the criti-
cal issues: the lack of an automatic mechanism to identify and adapt to missing training
data characteristics and the limited scalability resulting from the requirement to finetune
text-to-text models. This, as highlighted by other domain solutions like those in [41], not
only challenges the relevance of existing techniques for direct comparison but also positions
ATLANTIS as a pioneering framework for CBIR.

3 ATLANTIS Framework
ATLANTIS, standing for Automated Targeted Language-guided AugmeNtation Training
for Robust Image Search, introduces a novel multi-modal framework designed to refine the
training process of state-of-art CBIR models. The overall framework is outlined in Fig.1.
ATLANTIS has 5 main building blocks: (1) Data Insight Generator DIG (Fig.1, step 3)
for image and metadata analysis in text space to discover available data’s weaknesses; (2)
Augmentation Protocol Selector APS (Fig.1, step 4) for defining objectives for synthetic data
generation; (3) Synthetic Data Generation for synthesising text prompts (Fig.1, step 5) and
images (Fig.1, step 6); (4) Outlier Removal and Diversity Control (ORDC) (Fig.1, step 7) for
optimising synthetic data quality; and (5) Filtering Feedback (FFeedback) (Fig.1, step 8) for
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Algorithm 1 Hybrid Data Insight Generator (DIG) for the Input Image Data
Require: Original image data Xo, fID, LLM, FrequencyEval, ContextMaker,

DomainInfer, ClassInfer, NewClassSearch, InsightExtract.
Ensure: Data insights Dinsight

1: E ← fID(Xo), Tclean← Tokenize(E)−StopWords
2: C ← FrequencyEval(AnnotatePOS(Tclean))
3: M← Metadata(Xo), R← ContextMaker(C,M,LLM)
4: Idomain← DomainInfer(C,R,LLM), Iclass← ClassInfer(C,M,LLM)
5: N ← NewClassSearch(Iclass,LLM)
6: Dinsight← InsightExtract(M,Idomain,Iclass,N )

Algorithm 2 Augmentation Protocol Selector (APS)
Require: Data insights Dinsight, Filtering Feedback Ffeedback, Training Feedback Tfeedback,

LLM, AugmentationObjective, ReferenceDescription, feedback initia-
tion parameter n, IncorporateFeedback.

Ensure: Augmentation objectives Oaug, Reference descriptions Dref
1: Oaug,Dref←{},{}
2: for each class c in {C ∪N ⊂ Dinsight} do
3: Oaug[c]← AugmentationObjective(Dinsight[c],LLM)
4: Dref[c]← ReferenceDescription(c,LLM)
5: if training steps%n==0 then
6: Oaug← IncorporateFeedback(Oaug,Ffeedback,Tfeedback,LLM)

keeping filtered synthetic data consistent with APS’s defined objectives for the augmentation.
We also experiment adding training feedback (TFeedback).

3.1 Data Insight Generator (DIG)

Given Xo the original DML training dataset, DIG processes the visual data and metadata of
Xo in text form (algorithm 1). First, the visual features (denoted E) are extracted through a
pretrained image-to-text model fID(Xo). This phase leverages state-of-art LVMs [1, 18, 19]
that approximately embody Sampling Theorem precepts, ensuring discrete textual repre-
sentation maintains the visual domain’s continuous semantic integrity [22, 30]. Subse-
quent stages include tokenization (Tokenize), cleaning (Tclean) with StopWords filter-
ing, and frequency analysis (FrequencyEval) of extracted informative tokens through
AnnotatePOS, pinpointing prevalent terms C. Data contextR is crafted using Context-
Maker employed with LLM-reasoning on C and existing metadata M. Domain (see sec-
tion 4.1) Idomain and object class Iclass distributions are deduced via DomainInfer and
ClassInfer functions defined with LLM-prompted reasoning, and tailored for the task
context and objectives that can handle both labeled and unlabeled input scenarios. For
novel class identification N , LLM reason on Iclass and R with the predefined function
NewClassSearch.

Finally the synthesis of target data insights is performed (InsightExtract) onM,
Idomain, Iclass, and N that includes contextual overview, further augmentation information,
and identified data deficiencies through domain and class distribution analysis, to provide
APS with actionable insights. Specific prompt instructions given to the LLM for each stages
in algorithm 1 and DIG’s example outputs are detailed in Sup.Mat.

Citation
Citation
{Achiam, Adler, Agarwal, Ahmad, Akkaya, Aleman, Almeida, Altenschmidt, Altman, Anadkat, et~al.} 2023

Citation
Citation
{Li, Li, Savarese, and Hoi} 2023

Citation
Citation
{Liu, Li, Li, and Lee} 2023

Citation
Citation
{Nyquist} 1928

Citation
Citation
{Shannon} 1949



SINGH ET AL.: ATLANTIS 5

Figure 2: Examples of noisy generations (semantic noise) by the SDXL model [26] for the
’Chuck-Will’s-Widow’ bird species. ORDC filtering ensures the removal of these kinds
of outliers while controlling the diversity in the synthetic data for augmentation.

3.2 Augmentation Protocol Selector (APS)

APS defines the augmentation objectives for a downstream LLM responsible for generating
text prompts for synthetic data generation. Leveraging the analytical and reasoning capabil-
ities of foundational LLMs, the APS transforms the data insights and feedback alerts into
actionable augmentation plans to guide the synthetic data generation process. As delineated
in algorithm 2, the APS first processes the distilled insights Dinsight from DIG to construct
a class-wise set of augmentation objectives Oaug and reference descriptions Dref. These ob-
jectives are tailored to address the identified class imbalances Iclass, domain gaps Idomain.
Additionally, APS also identifies novel supplementable classes N to further enrich the gen-
erated synthetic data for increased diversity.

Finally, APS incorporates feedback alerts later in the DML model training or finetuning
stages. This feedback (see Section 3.5) prompts the APS to update the augmentation objec-
tives in order to adapt the synthetic data generation strategy to the evolving training needs.
The predefined functions in algorithm 2 are primarily the defined system prompts for the
used LLM; more details available in Sup.Mat.

3.3 Synthetic Data Generation

The Synthetic Data Generation is executed in two sequential phases: generation of text de-
scriptions for the target synthetic data, and text-to-image synthesis.

Text Descriptions Generation. Given the set of enhancement objectives Oaug from the
APS, an LLM as text descriptions generator P generates class-wise text descriptions Tdesc
using the set of reference class descriptions Dref (Fig. 1, step 5). For each class c ∈ C,
the module constructs prompts tc ∈ Tdesc that are aligned with the augmentation strategy
Oaug[c], converting the abstract augmentation goals into concrete linguistic constructs for
the synthetic image data generation.

Image Synthesis. The image synthesis process is driven by a pretrained text-to-image
model G [26], which maps 1-1 the generated text descriptions Tdesc to a set of synthetic
images Isynth (Fig.1, step 6). This mapping G : Tdesc → Isynth ensures that each synthetic
image i ∈ Isynth visually embodies its text prompt t ∈ Tdesc, thereby systematically enriching
the original dataset Xo with targeted synthetic instances through the APS’s designed objec-
tives in the discrete text space. This structured process guarantees that the augmented dataset
is precisely tailored to the identified training data needs.
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Algorithm 3 ORDC Filtering
Require: f: pretrained DML model; Xo: original data; Lo: original data labels; Xs: syn-

thetic data; Ls: synthetic data labels; ∆: diversity factor for synthetic data.
Ensure: Cleaned synthetic data Xclean.

1: Initialize C,D = {},{}
2: for each label l in Lo do
3: nl ← number of samples with label l in Xo
4: C[l]← 1

nl
∑i:Lo[i]=l f(Xo[i]), D[l]← 1

nl
∑i:Lo[i]=l dist(f(Xo[i]),C[l])

5: Initialize Xclean to an empty set
6: for each synthetic sample Xs[i] do
7: l←Ls[i]
8: if dist(f(Xs[i]),C[l])≤ D[l]×∆ then
9: Add Xs[i] to Xclean

3.4 Outlier Removal and Diversity Control (ORDC) Filtering

The goal of ORDC filtering is to refine generated synthetic data by removing outliers and
controlling data diversity. This filtering process is crucial for removing unintended noise in-
troduced by the limitations of the text-to-image models and for curating the most beneficial
subset for the CBIR model being trained. Inspired from the reduced-reference image quality
assessment techniques [33, 40] and robust feature matching [13, 32, 36], our ORDC lever-
ages pretrained DML models to extract embeddings that encapsulate content-based features
independent of image alignment. Specifically, as delineated in algorithm 3, we employs f
(finetuned DINO/ViT-S [9]) to project the original and synthetic images, Xo and Xs to the
embedding spaces f(Xo) and f(Xs), respectively.

Next, we calculates the class centroids C[l] and average intra-class distances D[l] for each
class label l ∈ Lo. We then filter Xs whose embedding distance to C[l] is within D[l]×∆

where ∆ is a diversity factor. This ensures the synthetic images have similar distribution
as the original images. By adjusting ∆, ORDC can accommodate varying levels of data
complexity, rendering it effective across diverse application domains. Examples of noisy
images filtered out by ORDC are shown in fig. 2.

3.5 Feedbacks and Training

The Filtering Feedback module guarantees that synthetic data remains consistent with the
APS’s defined augmentation objectives after the ORDC filtering stage. It has predefined
exceptions and criteria for alerting APS to supplement filtering stage losses (see details
in Sup.Mat.). We also test a training feedback mechanism (TFeedback) that, after a prede-
fined number of training iterations, assesses the training classes with poor retrieval per-
formance and then alerts APS to generate additional data for them (details in Sup.Mat.).
In the final phase, the original training set is augmented with the refined synthetic data
{Xo,Xclean,X f f ,Xt f } and the target DML models is trained with this augmented set.
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Data PD DINOH [9] AD ∆∗
A-DINOH

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

Xcub

A f 64.2 75.6 84.4 91.0 As,Aa 1 68.4 78.4 86.3 91.9
As 69.2 78.1 85.5 90.6 Aa,A f 1 72.8 81.6 88.3 93.4
Aa 63.1 74.3 83.0 89.9 A f ,As 1 66.9 77.6 85.8 91.8

Xcars

Bs 70.3 79.2 86.8 91.7 Bc,Bp 1.5 75.4 84.7 91.0 94.4
Bc 66.9 76.1 83.9 89.8 Bp,Bs 1.5 75.8 84.2 90.4 94.5
Bp 56.9 68.6 78.2 85.6 Bs,Bc 1.5 75.2 84.5 90.9 94.5

ViTH [9] A-ViTH

Xcub

A f 78.3 87.0 92.4 96.0 As,Aa 1 79.7 88.0 92.9 96.0
As 79.1 87.5 92.4 95.8 Aa,A f 1 81.7 88.4 93.1 96.1
Aa 77.7 86.5 92.2 95.8 A f ,As 1 79.9 87.5 92.8 95.9

Xcars

Bs 65.1 76.2 84.6 90.7 Bc,Bp 1.5 72.8 82.5 89.7 94.1
Bc 62.7 73.3 81.7 87.9 Bp,Bs 1.5 74.1 82.8 90.0 94.2
Bp 51.0 63.1 73.8 83.2 Bs,Bc 1.5 71.1 81.6 89.2 94.0

Table 1: Results for automated domain augmentation in ATLANTIS. PD: domains present
in the original training data, AD: a superset of augmented domains based on class-specific
characteristics. A f ,As,Aa are 3 activity-based domains in Xcub[34]; while Bs,Bc,Bp are 3
vehicle body-type based domains in Xcars[17]. ∆∗ represents optimal diversity factor ∆ used
in ORDC filtering.

4 Experiments

4.1 Experimental Setup
Datasets and Evaluation Metric. We conduct experiments on three image retrieval bench-
mark datasets: CUB-200-2011 [34], Cars196 [17], and Stanford Online Products (SOP) [23].
To simulate data scarcity and distribution skewness, we engineered training subsets with se-
lectively redacted certain patterns, while also maintaining the original test sets unaltered.
Specifically, to control class distribution, we define the skewness parameter κ : Ctotal → N
where Ctotal is the entire set of classes. For a subset of classes Crestricted ⊂ Ctotal, we applied
a restriction on the number of samples to λ , generating controlled variations in class repre-
sentation:

κ(i) =

{
λ if i ∈ Crestricted

Ni if i ∈ Ctotal \Crestricted

For domain distribution control, we first define a set of domains for each dataset based on
DIG output. For example, for the CUB-200-2011 dataset, domains were categorized based
on avian behaviors such as ‘Sitting’ (As), ‘Swimming’ (Aa), and ‘Flying’ (A f )
; while the Cars196 dataset has domain ‘Sedan’ (Bs), ‘SUV-Crossover’ (Bc), and
‘Performance Sport or Convertible’ (Bp).

For a fair comparison across all experiments with or without novel class augmentation
N , we maintain an unchanged test set identical to the baselines, ensuring that the augmented
training set contains neither classes nor images from any test class. While we restrict these
generations during evaluation, in practice, the test set is always unknown. The ability of
ATLANTIS to automatically infer test set information during augmentation would be a sig-
nificant advantage. All images are resized to 224× 224 input resolution. We adopt the
standard recall at K (R@K) as the evaluation metric, following [16].
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κ ZS Model CUB-200-2011[34] Cars196[17]

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

150 ✗

DINOH 72.0 80.6 87.6 92.7 46.4 57.5 68.2 77.5
A-DINOH 76.5 84.5 90.5 94.4 77.8 85.6 90.8 94.2
ViTH 80.1 87.8 92.5 96.1 43.5 54.9 65.7 75.6
A-ViTH 82.4 89.1 93.5 96.3 74.5 83.7 90.1 94.1

100 ✗

DINOH 75.6 83.8 89.7 93.9 66.7 77.0 84.9 90.3
A-DINOH 78.3 85.7 91.6 95.1 79.6 87.5 92.8 96.0
ViTH 82.9 89.5 93.7 95.6 59.2 70.9 80.5 87.9
A-ViTH 83.9 89.9 93.9 96.5 76.9 85.6 91.2 95.0

75 ✓

DINOH 64.3 75.7 84.7 90.9 61.8 73.0 81.6 88.4
A-DINOH 76.0 84.3 90.3 94.1 80.6 88.1 92.9 95.7
ViTH 78.1 86.9 92.6 95.9 58.4 70.6 80.7 88.2
A-ViTH 83.5 89.9 93.6 96.3 76.5 85.5 91.3 95.0

50 ✓

DINOH 71.0 81.5 88.5 93.6 75.0 83.5 90.0 94.4
A-DINOH 76.5 84.8 90.5 94.7 82.6 89.2 93.8 96.5
ViTH 79.1 87.5 92.6 95.7 70.2 79.6 87.0 92.4
A-ViTH 83.1 90.0 93.8 96.1 78.6 86.7 92.0 95.6

Table 2: Results for automated class imbalance mitigation in zero-shot (ZS) and full-shot
learning tasks are presented. Here, κ denotes the number of training classes with λ = 2.
The full-shot and zero-shot scenarios comprised 200 and 100 training classes for the CUB-
200-2011 data, respectively, and 196 and 98 classes for the Cars196 data. The ∆ of 1 for
CUB-200-2011 data, and 1.5 for Cars196 was found optimal.

Baselines and Implementation. We compare ATLANTIS with current state-of-art in CBIR
– DINOH and ViTH [9] – to evaluate performance gains in data-scarce scenarios. Addition-
ally, for standard benchmarks, we also compare with Margin [37], NSoftmax [42], MIC [27],
and IRTR [8]. The models in all experiments have ImageNet pretraining initialization and
operates with embedding dimension of 128. We do not freeze the DML backbones and use
the same losses and training procedures as in the original work [9]. For image-to-text meta-
data conversion (Fig.1, step-2), we employ BLIP-2 [18], and utilise SDXL [26] to synthesise
realistic images (Fig.1, step-6) from textual descriptions. We use GPT-4 [24] (without vision
component) as the LLM reasoning engine (Fig.1, steps 3, 4, 5). In the ORDC filtering phase
(Fig.1, step-7), we experiment with ∆ ∈ {0.9,1,1.2,1.5,3,5,∞} (detailed in Sup.Mat.), and
also the experiments with active training feedback TFeedback is presented in Sup.Mat. only as
we found insignificant gains due to finetuning.

4.2 Data-scarce Settings
Domain Augmentation. Table 1 shows that ATLANTIS exhibits significant image re-
trieval performance enhancements in multiple domain-scarce scenarios across all datasets
and DML models. Specifically, R@1 scores increase up to 18.3% and 20.1% for the domain-
specific Cars196 Bp category on DINOH and ViTH models, respectively. For the CUB-200-
2011 As domain, the increments are 3.6% with ViTH and 2.6% with DINOH .

Class Imbalance Mitigation. We evaluate class imbalance mitigation in both full-shot
(sample-wise train-test split within each class) and zero-shot (class-wise train-test split) set-
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Figure 3: Adversarial Robustness Gains: The plots (a) and (b) for CUB-200-2011, and
(c) and (d) for Cars196 data, present the improvements in adversarial R@1 achieved by our
framework against white-box embedding-space PGD attacks of varying intensities. We mea-
sure robustness across different numbers of attack gradient steps s and the (ℓ∞) adversarial
noise size bound ε with the combinations: ⊚, □, ⊛, and ⋆ representing attack settings when
{s = 1,ε = 0.05}, {s = 1,ε = 0.1}, {s = 10,ε = 0.05}, and {s = 10,ε = 0.1} (ε expressing
fraction of the image pixel values range). The figures (a) and (c) use original test data, while
(b) and (d) use synthetic data. Model used for evaluation: DINO vs. A-DINO.

tings. Table 2 depicts that ATLANTIS consistently outperforms other baselines, especially
in zero-shot scenarios with κ = 75, where training patterns are exceedingly scarce: R@1
scores increased by 11.7% over DINOH , and by 5.4% over ViTH for the CUB-200-2011
data. For Cars196 data, the enhancements were 18.8% over DINOH , and 18.1% over ViTH .

Adversarial Robustness Gains To confirm ATLANTIS’s effectiveness in enhancing ad-
versarial robustness, we perform white-box feature-space [28] (embedding layer only) eva-
sion (untargeted) attacks using the projected gradient descent (PGD) method [20] with vary-
ing attack strengths on both real and synthetic data. The untargeted PGD attack adds an
optimised imperceptible noise plane (ε) to an image such that its embedding diverges signif-
icantly from its original embedding. For different attack strengths, we measure robustness
across different numbers of attack gradient steps (s ∈ {1,10}) and magnitudes of the ℓ∞ ad-
versarial noise bound (ε ∈{ 12.75

255 , 25.5
255 ,

127.5
255 }). Figure 3 presents the R@1 gains on white-box

PGD attacks of varying strengths, devised with different ℓ∞ noise bounds ε and adversarial
optimisation gradient steps s. These attacks were crafted for causing evasion from the target
models (DINOH and A-DINOH ) in the embedding space. The models trained with AT-
LANTIS are particularly robust against attacks with imperceptible noise levels (ε ≤ 25.5

255 ),
resulting in up to an 18.85% increase in R@1 on the adversarial data. This confirms that
ATLANTIS does not induce overfitting to the test set but rather leads to less sensitive and
more generalised retrieval models.

4.3 Results on Standard Benchmarks

Although being designed for data-scarce scenarios, ATLANTIS still outperforms existing
methods on standard benchmarks for all datasets as illustrated in table 3. We note that the
augmentation power of ATLANTIS is constrained significantly for SOP [23] due to limited
computing resources to address the vast number of classes in this dataset, yet ATLANTIS is
consistently better than other baselines in most metrics. More details about SOP experiments
and results are in Sup.Mat.
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Method CUB-200-2011[34] (K) Cars196[17] (K) SOP[23] (K)

1 2 4 8 1 2 4 8 1 10 100 1000

Margin [37] 63.9 75.3 84.4 90.6 79.6 86.5 91.9 95.1 72.7 86.2 93.8 98.0
NSoftmax [42] 56.5 69.6 79.9 87.6 81.6 88.7 93.4 96.3 75.2 88.7 95.2 -
MIC [27] 66.1 76.8 85.6 - 82.6 89.1 93.2 - 77.2 89.4 94.6 -
IRTR [8] 72.6 81.9 88.7 92.8 - - - - 83.4 93.0 97.0 99.0
S-DeiT [9] 73.3 82.4 88.7 93.0 77.3 85.4 91.1 94.4 82.5 93.1 97.3 99.2
S-DINO [9] 76.0 84.7 90.3 94.1 81.9 88.7 92.8 95.8 82.0 92.3 96.9 99.1
H-DeiT [9] 74.7 84.5 90.1 94.1 82.1 89.1 93.4 96.3 83.0 93.4 97.5 99.2
DINOH [9] 78.3 86.0 91.2 94.7 86.0 91.9 95.2 97.2 84.6 94.1 97.7 99.3
ViTH [9] 84.0 90.2 94.2 96.4 82.7 89.7 93.9 96.2 85.5 94.9 98.1 99.4

A-DINOH 79.1 87.1 92.2 95.5 86.8 92.4 95.5 97.3 84.8 94.2 97.8 99.4
A-ViTH 84.1 90.3 96.5 97.9 83.4 90.0 94.0 96.5 85.4 94.9 98.2 99.5

Table 3: Standard Performance Benchmarks: ATLANTIS (A-) Surpasses state-of-art Models
in CUB-200-2011, Cars196, and SOP datasets. Performance of all baselines is reported in
[9]. Embedding size for all models was set to 128.

4.4 Ablations, Discussion, and Limitations

To assess the effectiveness and justify the presence of ATLANTIS’s pipeline components,
we compare the results with those of naive untargeted augmentation. For the same level
of generations as in ATLANTIS, the performance of naive augmentation remained lower,
but higher than in the non-augmentation case meaning the series containing DIG, APS, and
ORDC is indeed effective. The details are included in the Sup.Mat due to space constraints.

Our evaluations confirm ATLANTIS’s role in boosting CBIR model generalizability,
improving outcomes with both clean and adversarial samples. ATLANTIS is particularly
effective in data-limited contexts, offsetting shortages with targeted augmentation. It also
performs well in balanced CBIR benchmarks, though the use of multiple LLMs and LVMs
causes output variability. ORDC reduces, but does not eliminate, occasional instability from
LLM biases and occasional hallucinations. As ATLANTIS has a modular design, these is-
sues could be addressed in future with higher quality LLM and GenAI models. Regarding
ethical issues, ATLANTIS currently relies on the built-in filters of LLM and GenAI to avoid
generating inappropriate content, however a blacklist of objects and domains could also be
integrated to our ORDC for more controllable synthesis. Another limitation is the compu-
tational overhead - as an example it takes 2.4 hours to analyze the CUB-200-2011 dataset
and synthesize extra 228 images for domain scarcity A f settings in table 1 using a standard
Azure server with Intel Xenon GPU and 1x A100 GPU. Future work could leverage data
parallelism and distributed training to reduce such overhead.

5 Conclusion
In conclusion, ATLANTIS advances CBIR systems by introducing a cohesive multimodal
framework that mitigates available data insufficiency through targeted synthetic data aug-
mentation and the effective leverage of foundational language and vision models. The suite
of novel components in ATLANTIS, namely DIG, APS, ORDC, and the feedback mecha-
nisms, has demonstrated superior performance in CBIR tasks, especially in data-constrained
environments, while also reducing the adversarial sensitivity of these models due to im-
proved generalisation, marking a significant milestone in the CBIR field.
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