
A Atomized Proliferation Algorithm
The Atomized Proliferation algorithm is summarized in Algorithm 1. It starts with setting
parameters for Clone Threshold (τc), Split Threshold (τs), Prune Threshold (ε), Atom Scale
(Sa), and defining duration limits for atomized proliferation (ta) and warm-up phase (tw).
The algorithm iteratively processes each Gaussian property (µµµ,ΣΣΣ,ccc,α) from the Gaussian
set (MMM,SSS,CCC,AAA). A Gaussian is pruned if its α falls below the threshold ε or its covariance
(ΣΣΣ) is excessively large. If the gradient of the loss (∇pL) exceeds τc, the Gaussian is cloned
to potentially bridge geometry gaps. Additionally, the Gaussian is split when ∇pL meets
a dynamically adjusted threshold based on the warm-up progress and if the norm of ΣΣΣ ex-
ceeds the Atom Scale (Sa). Atomization takes place when the minimum norm of SSS is less
than or equal to Atom Scale Sa and within the proliferation timeframe (ta), ensuring detail
refinement before the proliferation endpoint.

Algorithm 1 Atomized Proliferation
Require: Clone Threshold τc, Split Threshold τs, Prune Threshold ε ,

Atom Scale Sa, Atomized Proliferation until ta, Warm-Up until tw
1: for all Gaussian(µµµ,ΣΣΣ,ccc,α) in (MMM,SSS,CCC,AAA) do
2: if α < ε or IsTooLarge(ΣΣΣ) then
3: Prune(µµµ,ΣΣΣ,ccc,α)
4: end if
5: if ∇pL ≥ τc then
6: Clone(µµµ,ΣΣΣ,ccc,α)
7: end if
8: if ∇pL ≥ min

(
i

tw
τs,τs

)
and ||SSS||max > Sa then

9: Split(µµµ,ΣΣΣ,ccc,α)
10: end if
11: if ||SSS||min ≤ Sa and i < ta then
12: Atomize(µµµ,ΣΣΣ,ccc,α)
13: end if
14: end for

B Gaussian Proliferation Trend
In Figure 1, we illustrate the Gaussian Proliferation Trend, which tracks the count of Gaus-
sians across iterations for nine different scenes within the Mip-NeRF360 dataset. The de-
picted curve represents the average number of Gaussians across these scenes, with the curve’s
width indicates the standard deviation. The fluctuations observed highlight the effectiveness
of the opacity resetting strategy in eliminating redundant Gaussians. Initially, the 3DGS
method struggles to densify Gaussians, as indicated by an increasing standard deviation, and
it appears unable to stabilize by the end of the proliferation stage. In contrast, our method
employs a warm-up strategy that aggressively densifies Gaussians at the initial stage, fol-
lowed by a phase where Gaussians begin to merge, leading to a declining and stabilizing
trend in Gaussian proliferation.

On the Mip-NeRF360 dataset, our method demonstrates efficiency with an average train-
ing time of 0.28 hours and a final model size of 749MB, compared to 3DGS, which takes

1

0.40 hours for training and results in a model size of 869MB. This indicates that our approach
achieves superior quality without compromising on training time or model size.

Figure 1: Gaussian Proliferation Trend.

C Implementation Details
Codebase: We have developed AtomGS based on the 3D Gaussian Splatting (3DGS) frame-
work [3]. To facilitate Edge-Aware Normal Loss computation and Poisson mesh extraction,
we have implemented an additional feature renderer. This renderer generates various maps,
including accumulation, median and mean depth, normal, and curvature maps. Addition-
ally, we’ve developed an interactive real-time viewer that allows for the monitoring of these
features, providing a detailed analysis of Gaussians in terms of both RGB and geometric
information. For a detailed derivation of these implementations, please refer to Section D.
Hyper Parameter Settings: Following the 3DGS, we set the Clone Threshold at τc = 0.002,
Split Threshold at τs = 0.002, and Prune Threshold at ε = 0.005. For the Atom-related
settings, we set Atom Scale at the first percentile of distances from the input SfM points
Sa = P1(ddd), Atomized Proliferation until iteration at ta = 7000, and Warm-Up until iteration
at tw = 7000. For optimization, the weights for MS-SSIM and normal loss calculations
are both set at λms−ssim = λnormal = 0.1. When working with object-centered datasets that
lack extensive backgrounds, we advise setting the scale learning rate ηs = 0 to maximize
geometric accuracy. Specifically for the DTU dataset, we set Prune Threshold ε = 0.5, loss
weight λms−ssim = 1, Atom Scale Sa = P10(ddd), ant total training iterations at 7k.
Mesh Extraction: Mesh extraction involves rendering depth maps from training views,
which use median depth values from splats projected onto pixels. These maps are then
converted back into 3D space to derive corresponding normal maps. The oriented colored
point cloud generated from the RGB image, depth map, and normal map serves as the input
for the Poisson extraction method [2], which is used to create the textured mesh. This process
is illustrated in Figure 2.
Hardware: All experiments are conducted on a single NVIDIA GeForce RTX 4090 GPU.

D Gaussian Splatting and Additional Feature Rendering
Splatting: During this stage, 3D Gaussians are projected into the 2D image space to facilitate
rendering. Utilizing the viewing transformation WWW and the 3D covariance matrix ΣΣΣ, the
projected 2D covariance matrix ΣΣΣ

′ is computed through ΣΣΣ
′ = JJJWWWΣΣΣWWW⊤⊤⊤JJJ⊤⊤⊤. Additionally,

2

Citation
Citation
{Kerbl, Kopanas, Leimkuehler, and Drettakis} 2023

Citation
Citation
{Kazhdan, Bolitho, and Hoppe} 2006

Figure 2: Poisson Mesh Extraction.

we can use the same transformation to compute µµµ ′ ∈ R2 in 2D projected space. Given the
position of a pixel xxx ∈ R2, 3D Gaussian splitting can be formed as follows:

Gi(xxx) := exp(−1
2
(xxx−µµµ

′
i)
⊤

ΣΣΣ
′−1
i (xxx−µµµ

′
i)). (1)

Rendering: Upon receiving the position of a pixel xxx, the distances to all overlapping Gaus-
sians are computed using the viewing transformation WWW , thereby generating a sorted list
of Gaussians N := {G1, ...,GN}. Subsequently, alpha compositing is employed to render
accumulated weight for each pixel:

wi(xxx) = αiGi(xxx)
i−1

∏
j=1

(1−α jG j(xxx)). (2)

Using the above weight function, several key maps can be derived for each pixel:

1. RGB Color Map:

CCC(xxx) =
N

∑
i=1

ciwi(xxx) (3)

accumulates the RGB colors ci, each weighted by the respective wi(xxx), to produce the
final color output for each pixel.

2. Accumulation Map:

AAA(xxx) =
N

∑
i=1

wi(xxx), (4)

which aggregates the computed weights across all Gaussians.

3. Mean (Expected) Depth Map:

DDDmean(xxx) =
N

∑
i=1

ziwi(xxx), (5)

where zi represents the depth associated with each Gaussian, weighted by wi(xxx).

4. Median Depth Map:

DDDmedian(xxx) = zi where i = min
i

{
i−1

∏
j=1

(1−α jG j(xxx))> 0.5

}
(6)

calculates the median depth by identifying the first Gaussian for which the Transmit-
tance value exceeds 0.5.

3

Depth Map Unprojection: Given a depth map DDD′ of size H ×W , where (i, j) are pixel
coordinates and di, j is the depth at pixel (i, j), the unprojecting steps are as follows:

1. Normalization: The pixel coordinates are normalized to the range [−1,1] using xnorm =
2 j

W−1 −1 and ynorm = 2i
H−1 −1.

2. Homogeneous Coordinates in Camera Space: The normalized coordinates are then
transformed into homogeneous camera space coordinates pcamera = [xnorm,ynorm,di, j]

T .

3. Depth Scaling: Using elements f1 and f2 from the camera projection matrix K, the
depth values are scaled as sdi, j =

f1·di, j+ f2
di, j

. The adjusted camera space coordinates are

set to p′
camera = [xnorm,ynorm,sdi, j]

T .

4. World Space Transformation: The transformed camera space coordinates are then
multiplied by the inverse of the full projection transform matrix T, resulting in pworld =
T× [xnorm,ynorm,sdi, j ,1]

T .

5. Discarding Homogeneous Coordinate: Finally, to obtain Cartesian coordinates, the
homogeneous coordinate is discarded: p′

world = pworld[0:3]
pworld[3]

. This results in DDD = p′
world

being the 3D coordinates in world space for each pixel.

Normal Map Calculation: Given an unprojected depth map, DDD ∈ RH×W×3, we can output
the corresponding normal map using the cross product of the depth map’s gradients:

NNN =
∇xDDD×∇yDDD

||∇xDDD×∇yDDD||
(7)

E Additional Results
We provide detailed per-scene metrics for the Mip-NeRF360 and Tank & Temple datasets
in Table 1. Additionally, we offer further insights through 2D rendering comparisons in
Figure 3 and 3D mesh comparisons in Figure 4.

Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai Truck Train Mean

PS
N

R 3DGS 25.10 21.52 27.18 26.49 22.37 31.22 28.96 30.98 32.18 25.39 22.02 26.67
SuGaR 23.13 19.67 25.30 24.23 21.44 29.85 27.53 29.33 30.47 22.69 20.47 24.92
Ours 25.33 21.71 27.44 26.58 22.11 31.30 28.97 30.88 32.15 25.47 21.93 26.72

SS
IM

3DGS 0.763 0.603 0.860 0.763 0.626 0.916 0.905 0.923 0.939 0.878 0.812 0.817
SuGaR 0.663 0.514 0.793 0.669 0.558 0.901 0.882 0.892 0.928 0.827 0.762 0.763
Ours 0.772 0.611 0.865 0.774 0.633 0.918 0.906 0.925 0.938 0.880 0.817 0.822

L
PI

PS

3DGS 0.205 0.332 0.107 0.213 0.326 0.219 0.200 0.127 0.204 0.148 0.208 0.208
SuGaR 0.307 0.378 0.182 0.307 0.408 0.2395 0.222 0.167 0.211 0.175 0.259 0.260
Ours 0.203 0.325 0.104 0.202 0.317 0.222 0.202 0.127 0.202 0.133 0.200 0.203

Table 1: PSNR↑, SSIM↑, LPIPS↓ metrics for Mip-NeRF360 and Tank&Temple datasets

In Figure 3, the RGB rendering results of our AtomGS show enhanced detail compared to
those of Sugar. This is evident in the regions observed on the tree trunk in the "stump" scene
and the slender, curly hay near the dried grass ornament in the "garden" scene, as highlighted
in the magnified areas. While AtomGS’s RGB renderings appear visually similar to those of
3DGS, the normal maps reveal that AtomGS better preserves geometry accuracy, such as the
tree trunk in the "stump" scene and both the ground beneath the table and the surface of the
soccer ball in the "garden" scene.

4

Figure 3: Radiance Field Comparison on the Mip-NeRF360 Dataset.

5

In Figure 4, Neus, which uses Signed Distance Functions (SDF), produces the smoothest
surfaces. However it sometimes sacrifices sharp features, leading to overly smoothed sur-
faces. SuGaR attempts to convert every Gaussian into 2D ellipsoidal disks, resulting in
relatively smooth surfaces. However, the disks do not always align perfectly with the sur-
faces, creating noticeable disk-shaped artifacts and sometimes overfitting the background.
In contrast, AtomGS achieves smooth surfaces while retaining detailed geometries.

D
T

U
10

6
D

T
U

12
2

L
eg

o
C

ha
ir

(a) Ours (b) NeuS (c) SuGaR

Figure 4: Mesh Comparison on the DTU and NeRF Synthetic Datasets [1, 4]

6

Citation
Citation
{Aan{T1ae }s, Jensen, Vogiatzis, Tola, and Dahl} 2016

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2021

References
[1] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and An-

ders Bjorholm Dahl. Large-scale data for multiple-view stereopsis. International Jour-
nal of Computer Vision, pages 1–16, 2016.

[2] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruc-
tion. In Proceedings of the fourth Eurographics symposium on Geometry processing,
volume 7, 2006.

[3] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. 3d
gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics
(TOG), 42(4):1–14, 2023.

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. Communications of the ACM, 65(1):99–106, 2021.

7

