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A Details of Shadow-Sunlight and Shadow-Pointlight

A.1 Controlled Setup in Blender

In this section, we describe the scene setting in Blender and how we set the generative values
for each factor. The overview of the scene in Blender is shown in Fig. A.1, where the black
box (⊠) is the camera. For Shadow-Pointlight, the light position is the value determined
by the center of the light ball. For Shadow-Sunlight, since all rays are parallel, we set the
direction from the center of light ball to the origin of scene to be the value of sunlight direc-
tion, the difference of two types of light sources in Shadow-Sunlight and Shadow-pointlight
can be illustrated in Fig. A.2. For the scale, we set the basic size (Object scale=1), which is
determined by the height from the center of object gravity to the floor. Other object scales
are determined by changing this height.

Figure A.1: Environment scene in Blender.

A.2 Factors of Variant

As introduced in Sec. 4, Shadow-Sunlight and Shadow-Pointlight have seven factors of vari-
ant and eight factors of variant, respectively. The name of each factor of variant and the
number of each variant are summarized in Tab. A.1. Shadow datasets contain seven dif-
ferent object shapes: Cube, Sphere, Cylinder, Tetrahedron,140 Octahedron, Dodecahedron,
and Icosahedron. Objects can have one of seven different colors in (R,G,B): Red (255,0,0),
Orange (255,128,0), Yellow (255,255,0), Green (0,255,0), Cyan (0,255,255), Blue (0,0,255),
and Purple (128,0,255). Each object can be assigned one of seven different scales. There
are six different light colors (R,B,G): SkyBlue (128,255,255), Plum (255,128,255), Khaki
(255,255,128), Lavender (128,128,255), Lightgreen (128,255,128), and Coral (255,128,128).
In In Shadow-Sunlight, there are 20 different light directions, and in Shadow-Pointlight, the
light directions are controlled by 20 different light positions. Since the shadow shape, the
floor color, and the brightest floor position are effect factors, their values are controlled by
object shape, object scale, light position/direction, and light color. To better illustrate each
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Factors Number of Variants
Object shape 7
Object color 7
Object scale 7

Light direction / position 20
Light color 6

Shadow shape N/A
Floor color N/A

Brightest floor position
(only in pointlight)

N/A

Table A.1: Generative factor settings of Shadow-Sunlight and Shadow-Pointlight. Shadow
shape, Floor color and Brightest floor position are effect factors controlled by cause factors.

Dataset Resolution
Factors of
Variation

Number of
Samples

Nuisance
Various generative

factors
Consistent with
Causal Graph

Pendulum [38] 96 × 96 4 7000 ✗ ✓ ✓

Flow [38] 96 × 96 4 7000 ✗ ✓ ✓

CelebA(BEARD) [38] 128 × 128 4 202599 ✓ ✗ ✗

CelebA(SMILE) [38] 128 × 128 4 202599 ✓ ✗ ✗

Shadow-Sunlight 128 × 128 7 41160 ✓ ✓ ✓

Shadow-Pointlight 128 × 128 8 41160 ✓ ✓ ✓

Table A.2: Meta-data comparison between Shadow datasets and existing datasets.

generative factor of variation, we show the traversal of each generative factor of Shadow-
Sunlight in Fig. A.3 and each generative factor of Shadow-Pointlight in Fig. A.4.

A.3 Split of training and test
For both Shadow-Sunlight and Shadow-Pointlight, we split the dataset by taking 90% sam-
ples for training, which are 36160 samples for training. The remaining 10% samples are
used for testing, which are 4116 testing samples.
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Figure A.2: Illustrations of two different light sources in Shadow-Sunlight and Shadow-
Pointlight, respectively.

Figure A.3: Factors of variation in Shadow-Sunlight. There are 20 different values of Light
direction factors.
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Figure A.4: Factors of variation in Shadow-Pointlight. There are 20 different values of Light
position factors.
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B Conditionally Independent Test on Original Real
Datasets and Curate CelebA(BEARD)

As discussed in Sec. 4 and proposed by [28], the correctness of a proposed causal graph can
be justified by testing the conditional independence between two factors. In causality theory,
There are three types of graph building blocks: chain, fork and immortality (collider). The
structures of them are illustrated in Fig. A.5.

As shown in Fig. A.5(a) and (b) respectively, Chain and fork share the same set of de-
pendencies. In both structures, x and X3 are associated, i.e., they are mutually dependent on
each other. If we condition on x′, (x|x′) and (X3|x′) become conditional independent with
each other, i.e., (x|x′)⊥⊥ (X3|x′).

Figure A.5: Three types of causal graph building blocks.

Different from chain and fork, Collider (immorality) has a distinct set of dependencies,
where the structure of collider is shown in Fig. A.5(c). x and X3 are independent of each other
but will become conditional dependent if both of them are conditioned on x′, i.e., (x|x′) ⊥̸⊥
(X3|x′). Besides, when conditioned on descendants of x′, (x|de(x′)) and (X3|de(x′)) are also
conditionally dependent, i.e., (x|de(x′))⊥̸⊥ (X3|de(x′)), where de(x′) stands for descendants
of x′.

By utilizing the property of each basic block, we can determine the conditional inde-
pendent relations between each factor according to the original proposed causal graphs of
CelebA(BEARD) and CelebA(SMILE) [38], which are shown in Sec. 3.3(c) and (d). Al-
though we discussed in Sec. 4 that we suggest omitting the evaluation on CelebA(SMILE),
we also test the conditionally independent relations in CelebA(SMILE) and observe that data
distribution of CelebA(SMILE) is also not consistent with the originally proposed causal
graph. Discussed in Sec. 4, we incorporate χ2 test to assess the conditional independent
relations, where we set the significance level to be α = 0.05. The null hypothesis is set as
H0: two factors are independent. Contrarily, H1 is: two factors are not independent. If the
p-value is less than the significance level α = 0.05, we reject H0. Since all generative factors
in CelebA are binary, the degree of freedom is 1. We describe the test for CelebA(BEARD)
and CelebA(SMILE) test in the following paragraphs sequentially.
CelebA(BEARD) conditionally independent tests The originally proposed causal graph of
CelebA(BEARD) is shown in Sec. 3.3(c), where Bald and Beard are colliders of Age and
Gender. By utilizing the conditionally independent relations inherent in three basic blocks
in a causal graph, according to the originally proposed causal graph of CelebA(BEARD),
the conditionally independent relations are summarised as: (1) Age and Gender should be
mutually independent with each other, (2) Age and Gender become conditionally dependent
when conditioned on Bald or Beard, (3) Bald and Beard are mutually dependent with each
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Age Gender Bald Beard
Age 10−5 0 0

Gender 10−5 0 0
Bald 0 0 0
Beard 0 0 0

Table A.3: p-value of χ2 (freedom=1) test between each factor when no condition on original
CelebA(BEARD). The red number indicates inconsistent relations between two factors with
original proposed causal graph.

Conditioned on p-value
Bald 0.0019
Beard 0.0

Bald and Beard 0.1519

Table A.4: p-value of χ2 (freedom=1) test between Gender and Age when conditioned on
different factors on original CelebA(BEARD).

other, (4) Bald and Beard are conditionally independent when conditioned on both Age and
Beard, (5) Any other remaining relations are dependent relations. Results of χ2 tests between
two factors, when they are not conditioned on any other factors, are shown in Tab. A.3. Since
the p-value between Age and Gender is smaller than the significance level α = 0.05, which
indicates that Age and Gender are not mutually independent of each other.

As shown in Tab. A.4, other conditionally independent tests demonstrate the consistency
between the collider structure of the original proposed causal graph with data distribution.
CelebA(SMILE) conditionally independent tests Similar to the test in CelebA(SMILE),
according to the originally proposed causal graph of CelebA(SMILE), which is shown in
Sec. 3.3(d), the corresponding conditionally independent relations are: (1) Gender and Smile
are mutually independent, (2) Gender and Mouth open are mutually independent,(3) Gender
and Smile are conditionally dependent when conditioned on Eyes open, (4) Gender and
Mouth open are conditionally dependent when conditioned on Eyes open, (5) any other
remaining relations are dependent relations. Results of χ2 tests between two factors when
there is no condition are shown in Tab. A.5. When conditioned on Smile, according to
the original proposed CelebA(SMILE) causal graph, the Gender and Mouth open should be
independent, which is not aligned with the data distribution shown in Tab. A.6.
Curate CelebA(BEARD) and conditionally independent tests on curate CelebA(BEARD)
As shown by the conditionally independent tests about the original CelebA(BEARD) dataset,
the only inconsistent relation is the relation between Gender and Age, where they are sup-

Gender Smile Eyes open Mouth open
Gender 3×10−5 0.02 0
Smile 3×10−5 0 0

Eyes open 0.02 0 0
Mouth open 0 0 0

Table A.5: p-value of χ2 (freedom=1) test between each factor when no condition on original
CelebA(SMILE). The red number indicates inconsistent relations between two factors with
original proposed causal graph.
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Conditioned on p-value
Eyes open 0.0017

Smile 7×10−6

Table A.6: p-value of χ2 (freedom=1) test between Gender and Mouth open when condi-
tioned on different factors on original CelebA(SMILE).

Age Gender Bald Beard
Age 0.5 0 0

Gender 0.5 0 0
Bald 0 0 0
Beard 0 0 0

Table A.7: p-value of χ2 (freedom=1) test between each factor when no condition on
curated CelebA(BEARD).

posed to be mutually independent according to the causal graph. Thus, to address this issue,
we explicitly sample the uniform Gender, where a random sample is first chosen, then ac-
cording to the Gender and Age of that sample, we sample another random sample with the
same Age but opposite gender. By performing this curate, in the curate CelebA(BEARD), we
can make Gender and Age to be statistically independent of each other, which is consistent
with the originally proposed causal graph.

By applying this curate operation, we explicitly make the Gender and Age to be mutually
independent of each other. To justify the consistency between the data distribution in curated
CelebA(BEARD) and the originally proposed causal graph, we conduct the same condition-
ally independent tests on curated CelebA(BEARD). As shown in Tab. A.7 and Tab. A.8,
the data distributions in curated CelebA(BEARD) are aligned with the originally proposed
causal graph. Thus, the curated CelebA(BEARD) can be used to evaluate causal representa-
tion learning.

Conditioned on p-value
Bald 0.0
Beard 0.0

Bald and Beard 0.2459

Table A.8: p-value of χ2 (freedom=1) test between Gender and Age when conditioned on
different factors on curate CelebA(BEARD).
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C Notation
As mentioned in Sec. 3, we include all notations and their corresponding meaning in this
section, which can be shown in Tab. A.9.

Notation Meaning
x and x′ input images pair
x̂′ and x̂′ reconstruction images pair

u and u′
micro-scope representation pair encoded from

image pairing x and x′, respectively

z and z′
causal factor pair mapped from

u and u′, respectively

z̃ and z̃′
New causal factor pair obtained from Effect Swap operation

applied on z and z′

ẑ and ẑ′
causal factor pair which is the outputs of GAE layer

that takes z̃ and z̃′, respectively

û and û′
micro-scope representation pair mapped

from ẑ and ẑ′, respectively

Enc(·) Visual encoder, which takes image x as input and
produce micro-scope presentation u as output

Dec(·) Visual decoder, which takes micro-scope presentation u or û as input and
produce reconstruction x̂ as output

fma(·)
Macro-embedding layer, which takes micro-scope presentation u as input and

produce causal factor z as output

GAE(·) Graph autoencoder, which takes causal factor z as input and
produce causal factors ẑ as output, which obey the causal mechanism

fmi(·)
Micro-embedding layer, which takes causal factors as input and produces

micro-scope representation as output. It can be viewed as inverse function of fma(·)

Table A.9: Notations for input images, micro-scope representations, causal representations,
and modules.
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D Identifiability Proof and Empirical evidence

D.1 Theoretical Identifiability Proof
In Sec. 3, we assume the generation process of causal representation learning datasets can
be expressed as following Eqs. (9) to (11):

p(z) = ∏
i
(zi|pai), p(z′) = ∏

i
(z′i|pa′i) (9)

z = s(z) z′ = s( f (z,z′,e)) e ∼ pE (10)

x = g∗(z) x′ = g∗((s( f (z,z′,e)))), (11)

where both z and z′ are causal factors and obey the same causal mechanism, and are
from the same distribution, pai is the set containing parents of factor i. E is the set of effect
factor indices, and e is randomly extracted from such set according to probability pE . f is
an operation that involves replacing the value of one effect factor z′e in z′ with the value of
paired effect factor ze. s is the solution function that propagates causal relations from causes
to their corresponding effects by zi = si(pai). s can be implemented as any neural network
that obeys causality constraints [26, 40, 41]. Due to the constraints imposed by s, the effect
factor value is exclusively determined by its parents. Thus, modifying the value of an effect
factor does not affect the output of s. where pai is the set of parent factors of factor i and s is
the solution function, which propagates the causal effects from causes to their corresponding
effects. NOTEARS [41] defines s as a linear function with acyclicity constraint, which is
utilized as a causal layer in CausalVAE [38]. For our proposed method, in order to handle
the non-linearity of causal relations, we adopt graph autoencoder (GAE) [26] to propagate
causal effects. In Eq. (10), f is the swap operation, where we replace one effect factor in
z′, e.g., z′i with the effect factor in the same location of z. Consider the generative process
in Eqs. (9) to (11) and further assume p(zi), p(z′i) are continuous distribution, g∗ is a smooth
and invertible function, i.e., z and X which is the domain of x and x′ are diffeomorphisic.
Given unlabelled data x and x′ and effect factor i, after swapping operation in Eq. (10).
Then, the learned marginalized posterior q(ẑ) is a coordinate-wise reparameterization of the
ground-truth p(z) up to a permutation of indices.

The logic of the proof follows the proof in [24]. However, since Locatello et.al [24]
assume the factors in latent representation are mutually independent, which is different from
the CRL assumption, we adjust the generation processes and training procedure to make
them align with the CRL assumption, i.e., the value of factors and raw inputs are generated
through a static causal mechanism. In order to prove the identifiability, we follow these steps:

1. We first characterize the constraints that need to hold for the posterior q(ẑ|x).

2. We parameterize all candidate posteriors q(ẑ|x) as function g∗.

3. We show that for one causes-effect relation, i.e., one effect factor and its corresponding
parent factors, q(ẑ|x) disentangle such effect factor, its corresponding parent factors,
and other factors.

4. We show that applying swapping operation on all causes-effect relations implies that
every candidate posterior is a coordinate-wise reparameterization of the distribution of
the ground-truth factors of variation.
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Figure A.6: Example of decomposing a causal graph into multiple causes-effect relations.

Step 1 By the generation process Eqs. (9) to (11), we know that all smooth and invertible
functions g need to obey the following equations with probability 1, which is irrespective of
whether p(z) or p(z′) is used:

g−1(x) = z = s( f (z′,z,e)) (12)

g−1(x′) = z′ = s( f (z,z′,e)) (13)

We now focus on only one causes-effect relation, i.e., there is only one effect factor i that
will be swapped between z and z′. Thus, given the assumption that the value of each element
is different, we can rewrite the Eqs. (12) and (13) as follows, where zo means other factors
except the specific effect factor i and its corresponding parent factors pai:

g−1
i (x) = zi = si(pai,z′i,zo) = si(pai, ·, ·) (14)

g−1
i (x′) = z′i = si(pa′i,zi,z′o) = si(pa′i, ·, ·) (15)

g−1
i (x) = zi ̸= s j(pa j,z j,zo j) = z j (16)

The reason we can focus on one causes-effect relation is that one effect is only decided by
its corresponding parent factors, and a specific causal graph can always be decomposed into
multiple causes-effect relations. One simple example can be shown in Fig. A.6.

Step 2 Per our assumption, X and z are diffeomorphic. Thus, all invertible smooth candi-
date functions for these two domains can be expressed as g = g∗ ◦h, where h maps one point
in ẑ to one point in z, i.e., h : ẑ → z, and h is also a smooth invertible function with inverse
h−1 that maps z to ẑ. After we have g−1 = h−1 ◦g∗−1, we can express Eqs. (14) to (16) as:

h−1
i (z) = h−1

i (s( f (z′,z,e)))

= h−1
i (si( f (pai,z′i,zo))) = h−1

i (si(pai))
(17)

h−1
i (z′) = h−1

i (s( f (z,z′,e)))

= h−1
i (si( f (pa′i,zi,zo))) = h−1

i (si(pa′i))
(18)

h−1
i (z) ̸= h−1

j (s( f (z,z′,e))) = h−1
j (s j(pa j)) (19)

Because h is a smooth and invertible function, we know that h−1 maps the coordinate sub-
space pai to submanifold Mpa in ẑ and coordinate subspace i to submanifold Mi in ẑ, and
subspace o to submanifold Mo, where each submanifold is disjoint from each other.
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Step 3 Next, we shall see that for a fixed causes-effect relation, the only admissible func-
tions h : ẑ → z are identifying three groups of factors pai, i, and o. To show this, we prove
that h can only satisfy Eqs. (17) to (19) if it aligns the coordinate subspaces pai, i and o of z
with the coordinate subspaces p̂ai, î and ô of ẑ. We show this by contradiction. If i does not
lie in Mî, then both Eqs. (17) and (18) will be violated. If pai does not lie in M ˆpai , then both
Eqs. (17) and (18) will also be violated. Further, if o does not lie in Mô, then Eq. (19) will
be violated. Therefore, Eqs. (17) to (19) can only be satisfied if h−1 maps each coordinate
pai, i and o to a unique matching coordinate p̂ai, î and ô, where there exists a permutation π

on [d], where d is size of the latent space and [d] = 1,2,3, ...d, such that:

h−1
ˆpai
(z) = h̃ ˆpai(zπ(pai)) (20)

h−1
î
(z) = h̃î(zπ(i)) (21)

h−1
ô (z) = h̃ô(zπ(o)) (22)

This means that the jacobian of h̃ is block diagonal with blocks corresponding to coordinates
indexed by p̂ai, î and ô.

Step 4 By step3, we show that for fixed causes-effect relations, we can find the permutation
π and h̃ where the learned ẑ is block-wise reparameterization corresponding to coordinates
indexed by p̂ai, î, and ô. However, the factors inside p̂ai and ô may still be unidentified.
To finally achieve the coordinate-wise reparameterization, we now make the causes-effect
relation randomly chosen. Since the cause-effect relation is randomly chosen, from step
3, we know that for one specific causes-effect relation, there is one h̃ function satisfying
Eqs. (20) to (22). When a causes-effect relation is randomly chosen, Eqs. (20) to (22) are
satisfied for all cases if and only if for every causes-effect relations, h̃ is block-diagonal.
Thus, together with Eqs. (20) to (22), we have:

h−1
i (z) = h̃i(zπ(i)),∀i ∈ [d] (23)

π is a permutation on [d], which implies that the jacobian of h̃ is diagonal. Therefore, we
can express the marginalized posterior q(ẑ) as:

q(ẑ) = p(h̃(zπ([d]))) | det
∂

∂ zπ([d])
h̃ | (24)

= p(h̃(zπ([d])))
d

∏
i
| ∂

∂ zπ([i])
h̃i|

By further assuming | ∂ h̃i
∂ zπ([i])

| ≠ 0,∀i ∈ [d], Eq. (24) shows that q(ẑ) is coordinate-wise repa-

rameterization of p(z) up to a permutation of the indices.

D.2 Empirical identification evidence
As discussed in [23], unsupervised learning methods are empirically proven to be incapable
of learning disentangled representation by two pieces of evidence. Firstly, different unsuper-
vised learning methods have similar performance. Secondly, randomness is more important
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than hyper-parameter tuning, where a model trained with sub-optimal hyper-parameters can
even outperform the model trained with optimal hyper-parameters.

Following this empirical study, we examine the validity of our model from these two
perspectives. Firstly, as shown in Secs. 4 and 5.1 and Fig. 3, all unsupervised learning meth-
ods have similarly poor performance while our model significantly outperforms them, which
implies that the correct causal relations are learned by our model. Secondly, we provide an
additional study regarding the effectiveness of hyper-parameter tuning. Our model is trained
on Pendulum dataset with five different random hyper-parameters settings and 20 random
seed for each hyper-parameters setting. As shown in Tabs. A.10 to A.13, compared to the
optimal hyper-parameters setting, models trained with other hyper-parameters show worse
performance. To this end, these two pieces of evidence entail the validity and soundness of
the proposed model.

Models PosMIC ↑ PosTIC ↑ NegMIC ↑ NegTIC ↓ FMIC
1 ↓ FT IC

1 ↑
original 56.1 ±2.1 43.6 ±3.7 29.7 ± 4.4 23.5 ±2.2 60.4 ±4.1 54.3 ±4.4

sub-opt 1 50.1 ±2.6 40.3 ±5.7 28.2 ± 4.2 23.9 ±2.7 55.3 ±3.9 49.1 ±4.2
sub-opt 2 46.6 ±2.4 39.7 ±3.0 24.3 ±2.4 20.5 ±2.3 49.2 ±3.2 43.2 ±3.3
sub-opt 3 49.7 ±3.2 40.7 ±2.1 28.9 ±2.4 23.7 ±4.0 55.1 ±3.4 51.8 ±3.9
sub-opt 4 52.5±2.8 42.2 ±3.3 29.9±3.9 24.0±3.6 58.6 ±4.0 52.2 ±3.6
sub-opt 5 47.6 ±5.1 40.6 ±3.6 26.6 ±2.6 22.3 ±2.0 52.9 ±3.6 47.7 ±4.1

Table A.10: Causal representation metrics tested on Pendulum where models trained with
sub-optimal hyper-parameters are evaluated and each hyper-parameters model is trained un-
der 20 different random seed.

Models PosMIC ↑ PosTIC ↑ NegMIC ↑ NegTIC ↓ FMIC
1 ↓ FT IC

1 ↑
original 61.7 ±4.8 52.4 ±4.7 25.1 ±4.4 18.1 ±4.0 63.9 ±3.7 62.1 ±3.6

sub-opt 1 58.9 ±4.2 49.6 ±4.0 26.4 ±4.2 19.3 ±3.7 60.2 ±3.6 59.3 ±3.9
sub-opt 2 55.9 ±3.7 46.8 ±4.1 24.5 ±3.8 17.1 ±3.2 59.3 ±3.3 55.7 ±3.2
sub-opt 3 54.4 ±3.5 45.7 ±3.7 23.1 ±3.9 16.7±3.9 58.7 ±3.6 57.9 ±3.5
sub-opt 4 53.2 ±4.0 44.8 ±3.5 23.7 ±4.0 17.2±3.5 58.2 ±4.1 57.6 ±3.3
sub-opt 5 57.1 ±4.2 49.2 ± 3.6 25.2 ±3.6 18.4±3.9 59.9 ±3.1 58.9 ±3.2

Table A.11: Causal representation metrics tested on Flow where models trained with sub-
optimal hyper-parameters are evaluated and each hyper-parameters model is trained under
20 different random seed.
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Models PosMIC ↑ PosTIC ↑ NegMIC ↑ NegTIC ↓ FMIC
1 ↓ FT IC

1 ↑
original 56.7 ±2.4 44.0 ±3.2 28.5 ± 4.5 22.5 ±3.2 60.9 ±4.2 55.0 ±4.1

sub-opt 1 52.2 ±3.2 41.2 ±3.3 28.2 ± 3.9 21.2 ±3.3 57.2 ±3.1 52.2 ±4.0
sub-opt 2 54.1 ±3.3 42.3 ±3.1 28.8 ± 3.8 23.2 ±3.7 59.3 ±4.0 53.5 ±3.7
sub-opt 3 50.7 ±3.7 39.4 ±2.9 25.3 ± 3.5 20.7 ±2.9 55.3 ±3.7 50.3 ±3.6
sub-opt 4 52.1 ±2.9 40.9 ±3.2 26.8 ± 3.7 21.3 ±3.7 57.7 ±3.9 52.7 ±4.2
sub-opt 5 53.4 ±3.0 42.0 ±3.4 27.7 ± 4.0 22.4 ±2.9 58.2 ±4.1 53.3 ±4.3

Table A.12: Causal representation metrics tested on Shadow-Sunlight where models trained
with sub-optimal hyper-parameters are evaluated and each hyper-parameters model is trained
under 20 different random seed.

Models PosMIC ↑ PosTIC ↑ NegMIC ↑ NegTIC ↓ FMIC
1 ↓ FT IC

1 ↑
original 59.2 ±4.9 44.3 ±4.7 34.1 ±3.7 28.3 ±3.2 60.3 ±3.7 53.3 ±4.2

sub-opt 1 56.3 ±4.2 43.0 ±3.9 38.1 ±3.3 28.2 ±2.7 57.3 ±3.6 51.2 ±4.1
sub-opt 2 54.7 ±4.3 42.2 ±4.2 35.2 ±3.5 27.5 ±2.9 56.7 ±4.2 49.7 ±3.9
sub-opt 3 53.2 ±3.9 40.7 ±3.5 33.7 ±4.2 26.1 ±3.5 55.1 ±3.9 49.3 ±3.7
sub-opt 4 54.1 ±4.0 42.4 ±3.3 34.9 ±3.3 28.6 ±3.1 55.9 ±3.2 50.7 ±4.4
sub-opt 5 57.3 ±4.4 43.6 ±3.7 36.7 ±3.9 27.7 ±3.8 59.0 ±4.0 52.5 ±4.1

Table A.13: Causal representation metrics tested on Shadow-Pointlight where models trained
with sub-optimal hyper-parameters are evaluated and each hyper-parameters model is trained
under 20 different random seed.

D.3 Limitation and future work
As discussed in Appx. D.1, the learned marginalized posterior q(ẑ) can be identified when
we know the true parent factors of specific effect factors and the number of generative causal
factors d. For practicality, we relax the first requirement by utilizing an HSIC regression
module and graph autoencoder (GAE). However, we can not relax the second constraint,
which requires prior knowledge about the ground-truth number of generative causal factors.
Another implicit assumption is causal sufficiency, which can also be assumed in all previous
works of causal representation learning [3, 38, 42]. Causal sufficiency assumes that all
factors are required to be observed during training. To mitigate the first challenge, methods
of constraining the number of latent factors need to be adapted, for example, utilizing the
intrinsic dimension estimation method [1, 19]. To address the second challenge, where there
are some confounders that are not observed, a new type of causal graph instead of pure
directed causal graph (DAG) needs to be adopted, such as maximal ancestral graph (MAG)
[29]. In addition, modifications to current causal representation learning datasets are also
needed to create a proper training and evaluation protocol to compare a model that can handle
the hidden confounders with other models with no such ability.
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Model
Pendulum Flow Shadow-Sunlight Shadow-Pointlight

MIC ↑ TIC↑ MIC↑ TIC↑ MIC ↑ TIC↑ MIC↑ TIC↑
Fully supervised learning methods (all labels are used)

CausalVAE [38] 95.1 ±2.1 81.6±1.9 72.1±1.3 56.4±1.6 72.7±4.0 62.2±3.9 71.1±5.1 58.9±4.3

ConditionVAE [33] 93.8±3.3 80.5±1.4 75.5±2.3 56.5±1.8 72.4±4.3 62.4±4.2 71.9±5.3 59.1±3.3

Unsupervised learning methods (no label is used)

CausalVAE(unsup) [38] 21.2±1.4 12.0±1.0 20.5±4.7 11.8±2.6 19.3±4.4 10.0±3.5 17.7±4.3 8.7±2.8

β -VAE [14] 22.6±4.6 12.5±2.2 23.6±3.2 12.5±0.6 18.9±4.1 7.8±3.7 17.9±4.5 9.2±1.8

LadderVAE [18] 22.4±3.1 12.8±1.2 34.3±4.3 24.4±1.5 15.6±4.9 7.9±2.8 15.3±3.9 7.4±2.1

Weakly supervised learning methods (no label is used)

DoVAE [42] 86.6±7.9 74.5±5.1 65.5±6.6 56.7±4.9 53.6±6.6 39.7±5.5 56.5±5.6 43.5±4.1

Causal-Macro(ours) 91.3±3.5 80.0±4.1 68.1±4.1 57.7±4.3 65.9±3.2 56.0±4.2 62.3±3.8 52.6±3.1

Table A.14: MIC and TIC values tested on Pendulum, Flow, Shadow-Sunlight and Shadow-
Pointlight.

Figure A.7: MIC ↑ results on the curated
CelebA(BEARD).

Figure A.8: TIC ↑ results on the curated
CelebA(BEARD).

encoder decoder
4*96*96*900 fc. 1ELU concepts*(4*300 fc. 1ELU)

900*300 fc. 1ELU concepts*(300*300 fc. 1ELU)
300*2*concepts*k fc. concepts*(300*1024 fc. 1ELU)

- concepts*(1024*4*96*96 fc.)

Table A.15: Pendulum and Flow datasets model architecture.

encoder decoder
- 1*1 conv. 128 1LReLU(0.2), stride 1

4*4 conv. 32 1LReLU (0.2), stride 2 4*4 convtranspose. 64 1LReLU(0.2), stride 1
4*4 conv. 64 1LReLU (0.2), stride 2 4*4 convtranspose. 64 1LReLU(0.2), stride 1
4*4 conv. 64 1LReLU (0.2), stride 2 4*4 convtranspose. 32 1LReLU(0.2), stride 1
4*4 conv. 64 1LReLU (0.2), stride 2 4*4 convtranspose. 32 1LReLU(0.2), stride 1

4*4 conv. 256 1LReLU (0.2), stride 2 4*4 convtranspose. 32 1LReLU(0.2), stride 1
1*1 conv. 3, stride1 4*4 convtranspose. 3, stride 2

Table A.16: Shadow datasets and curated CelebA(BEARD) model architecture.
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(a) !!"#$ ↑

(d) !!%#$ ↑

(b) #$%&'( ↑

(e) #$%)'( ↑

(c) Neg&'( ↓

(f) NegT'( ↓

Figure A.9: Tested on the curated CelebA(BEARD), our method consistently outperforms
SOTAs.
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(a) !!"#$ ↑

(d) !!%#$ ↑

(b) #$%&'( ↑

(e) #$%)'( ↑

(c) Neg&'( ↓

(f) NegT'( ↓

Figure A.10: Tested on the curated CelebA(SMILE), our method consistently outperforms
SOTAs.
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E Other experiments results

E.1 MIC and TIC scores tested on all datasets
As mentioned in Sec. 5.1, MIC and TIC do not evaluate causal relations, thus they are not
metrics for evaluating causal representation learning [42]. However, since MIC and TIC es-
timate the mutual information between one latent element with its corresponding generative
factor, MIC and TIC can reflect the performance of semantic meaning learning. To make
more comprehensive comparisons among all models, we also include the results of MIC
and TIC values of all models tested on Pendulum, Flow, Shadow-Sunlight, and Shadow-
Pointlight in Tab. A.14. As shown by Tab. A.14, supervised learning methods, CausalVAE
[38] and ConditionVAE [33], achieve best performance on MIC and TIC because of fully
supervised learning. However, when no label is available, CausalVAE(unsup) [38] and other
unsupervised learning methods fail to encode good semantic information in latent repre-
sentation, where a supervision signal is required to achieve such goal [23]. Compared to
unsupervised learning methods, weakly supervised learning methods can still successfully
encode meaningful semantic information in latent representation because a supervision sig-
nal is introduced by using a pair of inputs. Compared with DoVAE, our Causal-Macro can
achieve better performance on MIC and TIC because it first encodes visual information into
micro-scope representation, which can decrease the difficulty of downstream tasks. DoVAE
seeks to achieve both semantic information encoding and causal relations discovery simul-
taneously, which jeopardizes its performance on both tasks. As discussed in Secs. 4 and 5.1,
ground-truth labels are required to force the model to focus on the four expected generative
factors, thus all models are semi-supervised trained when tested on curate CelebA(BEARD).
Our proposed method, Causal-Macro, consistently outperforms other methods under the
same supervision strength, which indicates that Causal-Macro is able to better utilize the
supervision signal introduced by a pair of inputs.

E.2 Total evaluation results on curated CelebA(BEARD) and
CelebA(SMILE)

As discussed in Sec. 5 and shown in Fig. 3, because of the page limitation, we only include
the FMIC

1 and FT IC
1 which are combinational metrics in main pages. In this section, we

include all other metris results, including PosMIC/TIC and NegMIC/TIC of all models on
curated CelebA(BEARD) and CelebA(SMILE). The results of curated CelebA(BEARD) and
CelebA(SMILE) are shown in Fig. A.9 and Fig. A.10, separately.

E.3 Discussion about Causal-Macro and ILCM
In Sec. 5, our method is compared with ILCM [3] across multiple datasets: Pendulum, Flow,
and our newly proposed Shadows datasets. Even though we have briefly described the dif-
ference between ILCM and our method in Sec. 3, in this section, we will delve into the
distinctions between ILCM and our approach from various angles in more detail. These in-
clude differences in types of input pairs, applicable fields, and performance metrics across
diverse applications. This comprehensive comparison will highlight the unique aspects and
advantages of our proposed method in relation to ILCM.

Although both the proposed method and ILCM utilize pairs of inputs for learning causal
representations, the specific pairs required by each method differ. This distinction high-
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(a) Pair of inputs generation process in ILCM

(b) Pair of inputs generation process in Causal-Macro(ours)

Causal Mechanism #(⋅)
intervened Mechanism #̃(⋅)

Causal Mechanism #(⋅)

Figure A.11: Comparison between the different processes of generating a pair of inputs in
WSCRL [3] and our work. Specifically, in WSCRL, to generate a pair of inputs, one sample
is generated by the original causal system, and another sample in the pair is counterfactual,
which is generated by the intervened causal system. Because of the requirement of applying
intervention, WSCRL requires that the original causal system can be interacted with. On the
contrary, since the proposed Causal-Macro takes both factual inputs, it is more suitable for
cases where the causal system can not be interacted with and this is the focus of our work.

lights a key variation in their approaches to causal representation learning. In ILCM, as
discussed in [3], two types of inputs are used to learn causal representation. The first is a
natural observational sample produced by the original causal mechanism. The second is a
sample generated after applying a perfect atomic intervention to this mechanism, where per-
fect atomic intervention means intervening on only one factor without altering other factors.
Thus, in this process, two distinct causal mechanisms are employed: the original (producing
a factual sample) and the modified (resulting in a counter-factual sample because the causal
mechanism is modified, which is defined by [28]). In contrast, our method uses pairs of
inputs that are both derived from the original causal mechanism without any intervention,
making both samples factual. Such difference is also illustrated in Fig. A.11.

The input pair requirements for ILCM and our method lead to different applicable fields.
ILCM, as described in [3], is ideal for scenarios where an agent can interact with every node
individually in a causal mechanism, allowing for interventions. This makes it particularly
effective in controlled experimental environments. In contrast, Causal-Macro takes pairs
of inputs both derived from the unaltered causal mechanism, making it more suitable for
situations where interaction with the causal mechanism is not possible and only passive
observation is available. As demonstrated in our results, Sec. 4, Causal-Macro outperforms
ILCM in scenarios where the causal mechanism remains un-intervened, and the inputs are
factual.

It is important to note that when interventions on the causal mechanism are possible,
ILCM exhibits superior performance. For this comparison, we used the CausalCircuit dataset
from [3], also used in ILCM. CausalCircuit contains four (4) ground-truth generative factors,
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and the ground-truth underlying causal mechanism simulates the control flow between lights
in different colors. To adapt Causal-Macro to this setup, we trained it only with samples
from the original causal mechanism, excluding those from the modified system. The results,
detailed in Table Tab. A.17, show that ILCM outperforms our method when perfect inter-
ventions are feasible. This performance difference arises mainly from two factors: first, the
reliance of our method on factual input pairs reduces the sample size compared to ILCM;
second, the ability of ILCM to detect intervened nodes provides a stronger supervisory signal
for learning causal representations.

In conclusion, the distinct input requirements of the proposed Causal-Macro and ILCM
lead to varying suitable application scenarios. Our paper focuses on exploring Causal Repre-
sentation Learning (CRL) in situations where interaction with the original causal mechanism
is not possible. In addition, there are real-world scenarios where partial interaction with the
causal mechanism is feasible, presenting new challenges for current CRL methods. We leave
this area as an opportunity for future research.

Models
Causal-Circuits

PosMIC ↑ PosTIC ↑ NegMIC ↓ NegTIC ↓ FMIC
1 ↑ FT IC

1 ↑
ILCM [3] 79.4 69.3 24.1 17.6 79.7 74.6

Causal-Macro 70.6 64.4 33.0 25.7 68.8 65.5

Table A.17: Causal representation metrics tested on CausalCircuit.

F Implementation detail

F.1 Computation resources and model architecture
As our training and inference device, we employ a single NVIDIA 1080 Ti GPU. Follow-
ing the design of CausalVAE [38], we exhibit the VAE architecture of synthetic datasets in
Tab. A.15 and the VAE architecture of Shadow datasets and curated CelebA(BEARD) in
Tab. A.16. We also use the CausalVAE configuration for latent representation, where latent
space z is expanded to a matrix z ∈ Rn×k, where n is the number of concepts and k is the
latent dimension of each concept. k is set to 4 for VAE in the synthetic and Shadow datasets,
and 32 for VAE in the CelebA dataset.

F.2 Effect Swap and RCDM
As described in Sec. 3, we incorporate a mask vector m, where the value of the chosen
effect factor is one and the values of all other factors are zero. As discussed in Sec. 3,
because we incorporate a graph autoencoder (GAE) [26] as solution function and all causal
effects relations in GAE are propagated in one step, the mask m is necessary to remove the
influence of the chosen effect factor to its possible children factors, which will make GAE
output counter-factual result if such effect factor has children factor. We need to point out
that such mask m is not necessary if the solution function is implemented as any topological
method, i.e., the causal effects are propagated from root causes to the effect sequentially.
However, the swap operation f is valid when implementing on root causes if the solution
function is topological, and any incorrect causal relation will sequentially affect all relations
in its descendants because the causal effects are propagated sequentially. As described in
Sec. 3, our loss function for weakly supervised training is shown in Eq. (6), and the loss for
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semi-supervised training is shown in Eq. (7). The hyperparameters (α,β ) are grid search
among {1e−3,1e−2,1e−1,1.0}. Further, as described in Sec. 3, we incorporate a Root Cause
Discovery Module to identify the root causes in the causal graph. An MSE regularization
is further added to a pair of latent elements at the same location when their DKL is small to
further encourage the self-dependency constraints on discovered root cause factors.

F.3 HSIC algorithm

Algorithm 1 HSIC regression detector
Input: maro-level representations z = [z1,z2, ...,zn]

i := 0, j := 0, L := 0
while i ≤ n do

while j < i do
c := zi, e := z j
ê := Φ(c), ĉ := Ψ(e)
Li j := HSIC(e, ê)
L ji := HSIC(c, ĉ)
j := j+1

end while
i := i+1

end while
A = 1−σ(L−max(L)) ▷ σ is the sigmoid function
return A ▷ A is causal graph matrix

As described in Sec. 3.3, given two causal associated factors X and Y , the direction with
a smaller regression loss indicates higher confidence that this direction is the correct causal
direction, i.e.,

L(Y,Φ(X))< L(X ,Ψ(Y ))⇒ X is cause of Y , (25)

When training, the causal discovery on macro-scope representation based on HSIC regres-
sion is described in Algorithm 1, where the causal direction between a pair of factors is
indicated by comparing the element in its diagonal symmetric location.
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G Traversal Visualization
We include the image reconstruction traversal results in this section which are shown in
Figs. A.12 to A.15. When changing the latent cause factors before the causal discovery
layer, the latent effect factors in the reconstruction are changed accordingly because the
causal discovery layer propagates causal effects from causes to their corresponding effects.
In contrast, when changing the latent effect factors after the causal discovery layer, since
there are no causal effects propagated from the causes to effects after the causal discovery
layer, the reconstructions can be counterfactual images, where the latent cause factors stay
unchanged.

Figure A.12: Traversal reconstruction of Pendulum dataset. For each row, we only change
one latent factor value and fix all other latent factors.



36 : CAUSAL-MACRO AND SHADOW-DATASETS

Figure A.13: Traversal reconstruction of Flow dataset. For each row, we only change one
latent factor value and fix all other latent factors.

Figure A.14: Traversal reconstruction of Shadow-Sunlight dataset. For each row, we only
change one latent factor value and fix all other latent factors.
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Figure A.15: Traversal reconstruction of Shadow-Pointlight dataset. For each row, we only
change one latent factor value and fix all other latent factors.


