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Abstract
Discovering semantic meaningful latent factors and the causal relations among them

is an emergent topic in representation learning with notable impacts on real-world ap-
plications. However, many existing Causal Representation Learning (CRL) methods are
hindered by strong assumptions, such as full data annotation, the need for counterfac-
tual data, and/or prior knowledge of the causal structure. To address these limitations,
we introduce Causal-Macro, a weakly supervised architecture that effectively discov-
ers semantic causal factors and learns their causal relations. We theoretically show that
Causal-Macro is identifiable in the sense that the marginalized posterior distribution of
learned factors can be identified up to coordinate-wise reparameterization of ground-
truth factors. Additionally, we show that existing CRL datasets are limited to simple
causal graphs with a small number of generative factors. Thus, we propose two new
datasets with a larger number of generative factors and more sophisticated causal graphs.
Our comprehensive evaluations and detailed ablation studies demonstrate the superior
performance of Causal-Macro over existing methods.

1 Introduction
Learning causality models cause-effect relations among factors [26], enabling interpreta-
tion and assessment of interventions [26, 28]. Causal machine learning has applications
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in drug discovery [27], public health [9], and computer vision challenges like distribution
shift [20], domain adaptation [32], and fairness [40]. However, semantically meaningful fac-
tors and causal relations are often unavailable a priori [28]. Causal representation learning
(CRL) [28] learns semantically meaningful representations and causal relations from high-
dimensional raw data. Many CRL methods rely on strong assumptions like intervenable
causal mechanisms, counterfactual data [2, 33], temporal information [18, 19, 36], or known
causal graphs [29, 33], which are hard to realize in real-world applications.

To mitigate the challenge within the scenario where the underlying causal mechanism
cannot be interacted with, and only factual data is available [26], CausalVAE [35] attempts
to discover causal structures by a linear causal layer in a fully supervised training man-
ner, which requires extensive annotations. DoVAE [39] uses weak supervision with do-
operations [26] in latent space to reduce annotation needs. However, DoVAE struggles to
learn semantically meaningful representations and causal relations for many factors, uses a
randomly initialized Graph Autoencoder (GAE) [24] risking incorrect causal relations, and
overlooks nuances of chain-like causal structures [26] by swapping all possible cause factors.

To address the limitations of current methods, we introduce Causal-Macro, a novel CRL
approach that contains two stages of training. Stage one learns micro-scope [4] features us-
ing an autoencoder with Slots-Attention [23]. The first stage focuses on basic feature learning
without directly engaging in causal relation analysis. Subsequently, in the second stage, the
method builds macro-scope representations and causal relations using the micro-scope fea-
tures. This addresses challenges of underdeveloped visual encoders. Causal-Macro uses
Hilbert-Schmidt Independence Criterion (HSIC) [10] with GAE for refined causal relations
assessment. Effect-Swap strategically swaps one effect factor at a time using a mask m to
focus on direct causal relations in chains. Root Cause Detection Module (RCDM) identi-
fies root causes and adds training constraints. Further, we provide theoretical proof of the
identifiability of Causal-Macro, underscoring its reliability and effectiveness.

Meanwhile, we argue existing benchmarks are simple or improperly designed. Pen-
dulum, Flow [35], CelebA(SMILE), and CelebA(BEARD) [35] used in [35, 39] have few
factors and simple causal graphs. Further, we observe that the ground-truth causal graphs of
CelebA(BEARD) and CelebA(SMILE) are not properly aligned with their statistical distri-
butions. To overcome these deficiencies, we propose Shadow-Sunlight and Shadow-Pointlight,
simulating causal relations of light, floor, objects, and shadows under sunlight or point-
light [6], which have more factors and complex causal graphs. Further, We also curate
CelebA(BEARD) and CelebA(SMILE) to align statistics with ground-truth causal graphs.

The contributions of this paper are: (1) Causal-Macro; a novel and practical CRL method
that utilizes an HSIC regression detector, Effect-Swap and a RCDM , (2) A proof of identi-
fiability of weakly supervised Causal-Macro, (3) Shadow CRL benchmarks, which contain
more generative factors than current CRL datasets and more sophisticated causal relations,
(4) Identifying limitations of existing benchmarks and proposing curating two real datasets,
(5) Comprehensive evaluation of existing and proposed datasets demonstrates the superiority
of Causal-Macro, with ablation studies justifying design choices.

2 Related Works
Representation disentanglement and CRL: Disentangled representation learning focuses
on the independence of latent factors [13], whereas CRL seeks causal relationships be-
tween them [28]. Variational Autoencoder (VAE) [16], which has commonly been used
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Figure 1: Two training stages of Causal-Macro. Micro-scope representation u is first ob-
tained through unsupervised training. Then macro-scope causal representation z is coarsened
from u by macro-embedding layer fma and the causal relations are learned by comparing the
new reconstruction x̂ and x̂′ with the original inputs x and x′.

for both tasks, proposes disentangling the representation by minimizing reconstruction loss
with Kullback-Leibler divergence (DKL) as a regularizer on the latent space. Despite pre-
vious attempts of seeking disentangled representation via unsupervised VAE-based models
[5, 13, 17], supervision is proved to be necessary to identify the relations between latent fac-
tor pairs [21]. To fulfill such requirement, many CRL methods focus on learning causal rep-
resentations by relying on strong assumptions, such as utilizing counterfactual data [2, 33],
incorporating temporal information [18, 19, 36] or knowing causal graph [29]. Contrarily,
CausalVAE [35] directly uses the generative factor labels and adopts a linear causal discov-
ery layer to discover the causal relations. DoVAE [39] further relaxes the need for strong
supervision by leveraging swapping all cause factors to apply do-operation [26].
Structure learning: Structure learning, which focuses on learning causal graph structures
from census data, includes three main approaches: constraint-based, score-based, and con-
tinuous optimization-based methods. Constraint-based methods [15, 31] test conditional
independence between factors to explore causal graphs. Score-based methods [8, 11, 12]
evaluate causal graph candidates using scoring functions. Continuous optimization-based
methods, incorporating deep neural networks (DNNs), optimize specific objectives. For in-
stance, NOTEARS [38] learns linear causal relations with an acyclicity constraint, while
GOLEM [25] improves discovery performance using a new loss function. DAG-GNN [37]
and Graph Autoencoders (GAE) [24] extend these concepts to estimate non-linear relations
and enhance overall performance by adapting a graph neural network.

3 Causal-Macro

Causal-Macro sequentially learns micro-scope [4] representations to encode visual features,
followed by macro-scope [4] causal representations, benefiting from well-encoded micro-
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scope features. Fig. 1 illustrates Causal-Macro two-stage training scheme. First, raw input is
encoded into micro-scope representations u = [u1,u2, ...uk], where ui represents object visual
features in slot i, containing sufficient information for unsupervised reconstruction. Next,
the well-encoded micro-scope representation u is mapped to the macro-scope z (Sec. 3.1).
In the macro-scope, causal relations are discovered using a Hilbert-Schmidt Independence
Criterion [10] (HSIC) regression detector (Secs. 3.2 and 3.3).

3.1 From Micro to Macro

Micro-variables are fine-grained features containing complete, yet disorganized, informa-
tion that is enough for reconstruction, obtained via unsupervised learning. As illustrated
in Fig. 1(a), during the first stage of training, the Slot Attention Encoder fENC [23] utilizes
softmax-based attention mechanism to map inputs to features in each slot, which is ran-
domly initialized and iteratively refined with a recurrent function to align with a specific
object within the input features. As empirically shown in Sec. 5.3, compared to regular
VAE, utilizing Slot Attention module boosts overall CRL performance.

After the fENC and the decoder fDEC are trained in the first stage, those features in u
contain sufficient but unstructured visual information useful for downstream CRL tasks. In
the second stage, u are coarsened to a macro-scope representation z via a macro-embedding
layer fma. Since labels are often expensive to annotate, we seek to explore an approach
that discovers the causal representation without using labels. Thus, we introduce a weak
supervision signal by image-pairing and visual reconstruction through the micro-embedding
layer fmi and the decoder fDEC, where fmi serves as the inverse function of fma.

3.2 Weakly Supervised Causal Generative Model
We leverage input pairing to provide a weak supervision signal [22]. When the ground-truth
values of the causal factors are absent, supervision can be introduced by utilizing the Local
Markov Property of causality [26], i.e., p(z) = ∏i p(zi|pai), where z is causal factors and
pai is the set containing parents of factor i. By using this property and given the fact that
the causal mechanisms inherent in a pair of inputs are the same [39], a weak supervision
signal can be introduced via probing the possible changes of effect factors of a given image
pair when the corresponding causes are not altered. Considering an optimal generator g∗
and two causal factors z and z′, two corresponding raw inputs x and x′ can be generated via
g∗(z) and g∗(z′). z and z′ obey the same causal mechanism s(·), which can also be referred
to as solution function [2, 26] that constrains the unidirectional causal effects propagation
from causes to their corresponding effect factors via zi = si(pai) [26]. Such constraint of s
guarantees that varying an effect factor will not affect the output of s if parents of such factor
are not altered. The overall generation processes can be expressed by Eqs. (1) to (3).

p(z) = ∏
i
(zi|pai), p(z′) = ∏

i
(z′i|pa′i) (1)

z = s(z) z′ = s(h(z,z′,e)) e ∼ pE (2)

x = g∗(z) x′ = g∗(s(h(z,z′,e))) (3)

where E is the set of effect factor indices, e is a randomly sampled effect factor location from
E according to probability pE , and h is the Effect-Swap operation that replaces the value of
one effect factor z′e in z′ with the corresponding value of its pair ze. s can be implemented as
any neural network that obeys causality constraints [24, 37, 38].
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Theorem 3.1. Consider the generative process described in Sec. 3.2 and assume that all
cause factors are continuously distributed and the total number of generative factors d is
known. Let g∗ be a diffeomorphic function (i.e., smooth and invertible). Given infinite sam-
ples from p(x,x′) and the true number of parent factors corresponding to a specific effect,
after training a generative model following Eqs. (2) and (3), the posterior q(ẑ|x) is identifi-
able such that the marginalized posterior q(ẑ) =

∫
q(ẑ|x)p(x)dx is a coordinate-wise repa-

rameterization of the ground-truth causal factors p(z) up to a permutation of the indices of
z. The Proof of identifiability is included in Appendix C.

We want to notice that while both our method and ILCM [2] use pairs of inputs for
supervision, the types of input pairs differ significantly. ILCM requires one sample from the
original causal mechanism s(·) and another from an intervened and different mechanism s̃(·),
resulting in a counter-factual sample [26]. In contrast, our work focuses on scenarios where
intervening the causal mechanism is not possible, so both inputs in our pair are generated by
the original mechanism s(·). More Detailed discussions are included in Appendix E.3.

In practice, to introduce a weak supervision signal and align with the generation pro-
cesses described in Eqs. (2) and (3), we first encode a pair of inputs through encoder fENC
and macro-embedding layer fma to a pair of macro-scope representations z and z′. Then, we
randomly choose one effect factor ze and swap such effect factor with the corresponding fac-
tor in another macro-scope representation z′e to create two new macro-scope representations
z̃ and z̃′. These newly obtained representations are then fed into the solution function s that
propagates causal effects from causes to effects. As illustrated in Fig. 1, to account for the
nonlinearities of causal relations, we represent s with a graph autoencoder (GAE) [24]. If
the GAE learns the correct causal relations between the effect factor and its corresponding
causes, the GAE will adjust the effect factor value based on its parents. The whole process
of Effect-Swap operation can be expressed as shown in Eq. (4):

z̃ :=[z1, ...,z′e, ...,zd ]; ẑ = m⊙GAE(z̃)+(1−m)⊙GAE(z) (4)

z̃′ :=[z′1, ...,ze, ...,z′d ]; ẑ′ = m⊙GAE(z̃′)+(1−m)⊙GAE(z′)

where m is a mask with value one on the randomly selected effect factor e’s location and zero
elsewhere. m ensures GAE focuses on relations between ze and its parents without affecting
ze’s potential children. The new macro-scope latent representations, ẑ and ẑ′, are fed into fmi
and fDEC to generate reconstructions x̂ and x̂′, as shown in Eq. (5)

û := fmi(ẑ); x̂ = Dec(û)

û′ := fmi(ẑ′); x̂′ = Dec(û′)
(5)

Given an optimal GAE, the reconstructions, x̂ and x̂′, should be consistent with the original
inputs, x and x′, respectively, because only latent effect factors ze are exchanged by the
Effect-Swap, and these factors are controlled by their parent factors. Thus, the local causal
relation can be discovered by minimizing the distance between the reconstructions, x̂ and
x̂′, and the original inputs x and x′, respectively as d(x̂,x)+d(x̂′,x′), where d stands for any
proper distance function, such as mean square error (MSE) or binary cross entropy (BCE).
Further, throughout the training process, randomly selecting different effect factor location
e statistically leads to every local causal relation being traversed so that the complete causal
structure can be discovered. In addition, the loss between the inputs and the outputs of GAE
[24], and the acyclic causal graph loss, dag(A) [38], need to be included. The overall weak
supervision loss is shown in Eq. (6), where α and β are the hyper-parameters.

Lweakly = d(x̂,x)+d(x̂′,x′)+α(||ẑ− z||22 + ||ẑ′− z′||22)+βdag(A) (6)
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Please note that, although not needed, if a small amount of ground-truth labels l are avail-
able, our model can easily be extended to utilize such a supervision signal:

Lsemi = DKL(q(z|x, l)||p(z|l))+ ||l −GAE(l)||22 +Lweakly (7)

3.3 Causal Discovery by Regression
Causal directions can be inferred by regression [1, 3, 14, 34]. Thus, we use a regression
detector in the macro-scope to discover the correct causal relations in practice. Given two
causally associated factors X and Y , the smaller regression loss in a certain causal direction
indicates higher confidence in the correctness of such a direction, i.e.,

L(Y,Φ(X))< L(X ,Ψ(Y ))⇒ X is cause of Y , (8)

where Φ and Ψ are the mapping functions from X to Y and Y to X , respectively. Multiple
methods, such as linear, ridge, and HSIC regression, can be applied. However, as discussed
in [1], linear or ridge regression based detection requires all variables to be on the same scale
because MSE is used to compare the losses between two directions. Thus, we use HSIC
regression, which is free of such constraint and achieves the best performance, as discussed
in Sec. 5.3. The details of the causal discovery based on HSIC regression are described
in Appendix F.3, where the correct causal direction between a pair of factors is indicated
by the lower value of comparing the regression losses obtained from each direction. The
causal graph detected by HSIC regression will be utilized to apply Effect-Swap operation
and propagate causal relations within the GAE.

To further enforce the correctness of the discovered causal graph, we propose a Root
Cause Discovery Module (RCDM) to provide additional constraints. For a causal graph,
there is at least one root cause factor that is not controlled by any other factors. We utilize
DKL(q(zi|x)||q(z′i|x′)) to find such root cause factors, where i stands for the ith element.
Given a pair of latent representation elements describing the same semantic meaning, their
DKL is expected to be zero [22]. Given the complexity of modern neural networks, a pair
of corresponding root cause factors is more likely to reach such an ideal case because root
cause factors are solely controlled by themselves, compared with other factors. Thus, by
calculating the DKL among all feature element pairs, we take the factor of the pair with the
smallest DKL as the root cause factor. To implement this constraint during training, for a
detected pair of root cause factors, we first calculate the average value between them. Then,
we use this average value to replace both latent root cause factors. After decoding, their
reconstructions should be the same as the original inputs with respect to the semantic factors.

4 Shadows Benchmarks and Curated Real-world Dataset

As shown in Sec. 3.3, existing datasets, both synthetic and real, are too simple for CRL due
to their limited factors of variation, making them unsuitable for constructing complex causal
graphs. To address this, we propose two novel datasets: Shadow-Sunlight and Shadow-
Pointlight, which contain more factors of variation and enable the creation of more com-
plex causal graphs. Additionally, we observe that the real datasets, CelebA(BEARD) and
CelebA(SMILE) [35], are not statistically consistent with their originally proposed causal
graphs. Therefore, we propose curating these datasets for correct CRL evaluation.
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Figure 2: Datasets: Samples and ground-truth causal graphs of exisiting datasets and pro-
posed new datasets. First two rows show existing datasets. In the third row, we provide
samples and causal graphs of our newly proposed Shadow-Sunlight and Shadow-Pointlight.

Shadow Benchmarks: To address the limitation of current datasets, we propose two
novel datasets, Shadow-Sunlight and Shadow-Pointlight, which contain seven and eight fac-
tors of variation, respectively, so that more complex causal graphs can be constructed. Shadow
datasets are generated using Blender [6] with the Cycle rendering engine. The proposed
datasets simulate the causal relations between light, object, floor, and shadow. In Shadow-
Sunlight, we set the light source type to be sun light, which emits parallel light rays. In
Shadow-Pointlight, we set the light source type to be point light, in which all light rays are
emitted from a single point. Due to the different attributes of the two types of light sources,
the causal mechanisms inherent in the two environments are different, which leads to two
distinct datasets. The object attributes in the Shadow datasets are the cross-product of seven
different object shapes, seven different object colors, and seven different object scales. Fur-
ther, there are six different light colors. In Shadow-Sunlight, there are 20 different light
directions, and in Shadow-Pointlight, the light directions are controlled by 20 different light
positions. Since the shadow shape, the floor color, and the brightest floor position are effect
factors, their values are controlled by object shape, object scale, light position/direction, and
light color. Object color serves as the nuisance factor, which has no causal relation with
other factors. More details are in Appendix A.

Improvements of Real-world Benchmarks: CelebA(BEARD) and CelebA(SMILE)
[35] are two real datasets used for CRL, with originally proposed causal graphs shown in
Sec. 3.3(c) and (d). We detect inconsistencies between the statistical relations of factor pairs
in these datasets and the originally proposed causal graphs, indicating that learning optimal
causal graphs from the original data is ill-posed. As discussed in [26], conditional indepen-
dence tests can assess the correctness of a causal graph. Using the χ2 test, we evaluate the
correctness of CelebA(BEARD)’s originally proposed causal graph [35], which assumes Age
and Gender are mutually independent. However, the p-value of the χ2 test is 10−5, much
smaller than the significance level (0.01), indicating that Age and Gender are not mutually
independent. To align the dataset with the originally proposed causal graph, we randomly re-
move samples to make Gender and Age statistically independent. A similar curation process
is applied to CelebA(SMILE). More details are provided in Appendix B.
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Models Pendulum Flow
PosMIC ↑ PosTIC ↑ NegMIC ↓ NegTIC ↓ FMIC

1 ↑ FT IC
1 ↑ PosMIC ↑ PosTIC ↑ NegMIC ↓ NegTIC ↓ FMIC

1 ↑ FT IC
1 ↑

Fully Supervised learning methods (all labels are used)
CausalVAE [35] 53.0±4.5 43.4±3.7 46.6±3.9 37.0±4.2 53.2±3.6 51.4±3.2 45.1 ±4.8 36.7 ±4.2 43.3 ±5.1 33.7 ±3.2 50.2 ±4.4 47.3 ±3.7

ConditionVAE [30] 36.5±3.0 27.8±3.2 34.6±4.2 25.7 ±3.6 46.9 ±4.7 40.5 ±3.5 28.6 ±3.2 21.3 ±3.1 27.2 ±2.8 20.6 ±2.7 41.1 ±5.1 33.6 ±4.0
Unsupervised Learning methods (no label is used)

CausalVAE(unsup) [35] 20.5 ±2.6 11.8 ±2.7 23.3 ±3.2 14.7 ±1.9 32.4 ±3.4 20.7 ±3.1 22.8 ±2.7 12.5 ±1.4 21.5 ±2.4 12.0 ±1.9 35.3 ±5.6 21.9 ±4.7
β -VAE [13] 21.2 ±2.7 12.7 ±2.9 23.7 ±3.1 12.6 ±1.9 33.2 ±3.3 22.2 ±2.7 23.6 ±3.6 12.5 ±1.9 22.1 ±2.5 11.4 ±1.9 36.2 ±4.9 21.9 ±4.2

LadderVAE [17] 15.2 ±1.9 8.6 ±1.0 14.2 ±1.7 7.9 ±0.9 25.8 ±3.0 15.7 ±2.8 16.2 ±1.8 10.5 ±1.0 13.3 ±1.2 6.9 ±0.6 27.3 ± 3.2 18.9 ±2.8
Reduced supervision method (no label is used; supervision source is image pairing )

Do-VAE [39] 54.1 ±4.5 44.0 ±4.2 40.2 ±3.9 31.6 ±3.2 56.8 ±5.2 53.6 ±4.3 50.7 ±4.7 41.3 ±4.2 36.8 ±3.8 27.2 ±3.0 56.3 ±5.9 52.7 ±4.9
ILCM [2] 52.1 ±4.6 41.2 ±3.9 35.2 ±2.9 27.6 ±2.2 56.2 ±4.2 53.1 ±4.0 56.7 ±4.7 47.3 ±4.1 31.8 ±3.3 25.2 ±2.7 60.3 ±4.3 58.4 ±3.8

Causal-Macro(Ours) 67.4 ±3.6 57.1 ±2.6 32.0 ±3.0 25.5 ±2.5 65.3 ±3.1 60.9 ±2.5 63.9 ±4.0 54.7 ±3.2 25.0 ±4.1 17.9 ±2.9 65.2 ±3.3 64.4 ±3.0

Table 1: Causal representation metrics tested on Pendulum and Flow.

Models
Shadow-Sunlight Shadow-Pointlight

PosMIC ↑ PosTIC ↑ NegMIC ↓ NegTIC ↓ FMIC
1 ↑ FT IC

1 ↑ PosMIC ↑ PosTIC ↑ NegMIC ↓ NegTIC ↓ FMIC
1 ↑ FT IC

1 ↑
Fully Supervised learning methods (all labels are used)

CausalVAE [35] 43.6±5.2 35.6±3.8 33.1±6.9 22.5±4.5 49.1±5.6 44.9±4.2 39.2 ±3.7 29.1 ±4.5 31.1 ±5.1 25.1 ±3.8 54.2 ±4.6 50.2 ±4.7
ConditionVAE [30] 18.5±3.3 10.6±2.8 25.8±4.1 15.7 ±5.1 29.4 ±4.1 18.6±3.1 11.6 ±2.5 4.8 ±2.2 14.4 ±2.6 6.6 ±2.2 20.3 ±3.8 12.7 ±3.1

Unsupervised Learning methods (no label is used)
CausalVAE(unsup) [35] 13.2 ±3.3 7.6 ±2.3 17.5±3.2 9.7 ±3.9 22.4 ±4.7 14.4 ±4.8 12.5 ±2.8 5.6 ±1.5 14.9 ±2.4 7.3 ±2.0 19.7 ±3.6 10.9 ±3.5

β -VAE [13] 12.7 ±4.6 6.7 ±4.2 18.8 ±4.3 11.2 ±3.7 21.6 ±3.6 12.2 ±3.3 11.3 ±3.3 4.8 ±1.6 14.6 ±2.5 7.1 ±2.2 19.8 ±5.0 11.7 ±3.8
LadderVAE [17] 13.7 ±3.1 6.0 ±3.5 17.2 ±4.7 10.7 ± 2.9 22.8 ±4.5 11.1 ±5.1 7.9 ±4.1 5.2 ±1.9 15.2 ±3.2 8.7 ±2.6 14.3 ± 2.6 9.8 ±2.1

Reduced supervision method (no label is used; supervision source is image pairing )
DoVAE [39] 32.6 ±3.5 26.7 ±4.1 31.8 ±2.5 24.0 ±2.8 43.9 ±3.3 34.8 ±3.8 34.7 ±4.4 30.8 ±4.3 40.1 ±4.8 29.7 ±3.3 43.3 ±4.4 40.1 ±3.8

ILCM [2] 45.6 ±4.5 39.7 ±3.7 32.8 ±2.9 26.2 ±2.7 56.7 ±3.9 52.7 ±4.0 44.2 ±4.7 36.8 ±3.7 35.2 ±3.8 27.2 ±3.4 55.1 ±3.9 52.4 ±3.8
Causal-Macro(Ours) 59.7 ±3.0 47.1 ±3.6 25.3 ±3.1 20.5 ±2.2 62.9 ±3.9 59.2 ±3.1 60.5 ±3.9 50.1 ±3.5 32.1 ±3.2 25.6 ±2.9 62.4 ±3.3 60.2 ±3.1

Table 2: Causal representation metrics tested on Shadow-Sunlight and Shadow-Pointlight.

5 Experimental Evaluation

5.1 Benchmarks

Datasets: To demonstrate the effectiveness of our method, we performed experiments us-
ing the newly created Shadow datasets and the Pendulum and Flow benchmarks [35]. We
also evaluated our method on real-world datasets, curated versions of CelebA(BEARD) and
CelebA(SMILE), as detailed in Sec. 4. In these CelebA experiments, where nuisance fac-
tors (36) greatly outnumber causal factors (4), accurate evaluation requires focusing on
specific attributes [7]. Thus, we conducted these tests in a semi-supervised setting, using
{10%,20%,30%,40%} labeled data [39].
Metrics: To evaluate the CRL performance, we utilize PosMIC/TIC (Positive Maximal/Total
Information Coefficient) and NegMIC/TIC (Negative Maximal/Total Information Coeffi-
cient) proposed by [39]. To calculate positive metrics, latent effect factors are set to zero
before the causal discovery layer. Then, MIC and TIC between the latent effect factors after
the causal discovery layer and the ground-truth generative effect factors are calculated to be
the final scores of PosMIC and PosTIC. Higher positive metrics indicate better performance
because an effect value is expected to be correctly inferred from its causes. Conversely,
NegMIC and NegTIC assess the falseness of causal effects by firstly setting the latent cause
factors before the causal discovery layer to zero, then the MIC and TIC between the latent
cause factors after the causal discovery layer and the ground-truth generative cause factors
are calculated to be the final score. Since causal relations should only propagate from causes
to effects [26], the lower scores of negative metrics indicate better performance. Further,
to combine both positive and negative metrics, FMIC

1 and FT IC
1 [39] is obtained by calculat-

ing the harmonic mean between the positive metrics and one minus the negative metrics. All
metrics range from zero to one, and we scale them by 100. Details are included in Appendix.
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(a) CelebA(BEARD) ')*+# ↑ (b) CelebA(BEARD) '),+# ↑ (c) CelebA(SMILE) ')*+# ↑ (d) CelebA(SMILE) '),+# ↑

Figure 3: FMIC
1 and FT IC

1 results on the curated CelebA(BEARD) and CelebA(smile). Full
results are included in Appendix E.2.

Training Scheme
Shadow-Sunlight

FMIC
1 ↑ FT IC

1 ↑
End-to-End 55.2±5.6 52.4±4.7

Two-stage regular VAE 60.9 ±4.2 55.0 ±4.1
Two-Stages Slots(Ours) 62.9 ±3.9 59.2 ±3.1

Table 3: Ablation study of
comparing two-stage training
with different generators and
with end-to-end training.

Regression Model
Shadow-Sunlight

FMIC
1 ↑ FT IC

1 ↑
Linear 47.9±3.3 46.2±3.6
Ridge 50.2±3.1 47.7±3.9

HSIC(Ours) 62.9 ±3.9 59.2 ±3.1

Table 4: Ablation study
of different regression
methods for causal direc-
tion detection.

Models
Shadow-Sunlight

FMIC
1 ↑ FT IC

1 ↑
w/o RCDM 53.2±4.8 50.4±3.9

w/o average replacement 55.9±6.1 52.8±4.9
full RCDM 62.9 ±3.9 59.2 ±3.1

Table 5: Ablation study
about RCDM. The results
are tested on Shadow-
Sunlight dataset.

5.2 Comparing with SOTA Methods
As shown in Secs. 4 and 5.1 and Fig. 3, the proposed Causal-Macro outperforms SOTA
methods. CausalVAE [35] limits the causal discovery layer to be linear, thus showing sub-
optimal performance. ConditionVAE [30] forces latent factors to be mutually independent
so that, although it achieves good results on NegMIC and NegTIC, it cannot discover the
correct causal relations. Unsupervised methods, CausalVAE(unsup) [35], β -VAE [13] and
LadderVAE [17], show poor performances on PosMIC, PosTIC, FMIC

1 , and FT IC
1 because

they cannot learn the expected latent representation and encode semantic information [21].
Unsupervised methods achieve low value on NegMIC and NegTIC due to barely learning
semantic information. Besides, introducing supervision signal is necessary since Locatello
et al. [21] shows that unsupervised learning method is impossible and is highly unstable for
identifying the latent representation relationships. DoVAE [39], which also depends on weak
supervision, merely relies on an underdeveloped GAE for discovering causal relations during
training so that it may fail when a large number of causal factors exists, as shown in Sec. 5.1.
ILCM [2], which requires one sample in an input pair to be counter-factual data generated
by applying intervention on the underlying causal mechanism, fails to achieve good perfor-
mance when the underlying causal mechanism can not be interacted with and only factual
data is available. In contrast, Causal-Macro only requires factual samples where the un-
derlying causal mechanism need not be intervened. By first learning to effectively encode
visual information and then employing a nonlinear causal discovery layer with advanced
techniques, including HSIC regression detector and RCDM. This comprehensive approach
allows Causal-Macro to consistently excel in FMIC

1 and FT IC
1 , demonstrating its superiority

under the scenario where only factual data is available. We also include qualitative visual-
izations of Causal-Macro in Appendix G.

5.3 Discussion
Two-stage Training Scheme: The two-stage training approach first trains the model to en-
code visual information into a lower-dimensional representation. Subsequently, this refined
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visual representation is used to simplify learning causal relationships. In contrast, the end-to-
end approach trains the model to process visual information and identify causal connections
simultaneously, potentially leading to poorer outcomes if the visual representation is not
fully developed. As shown in Tab. 3, the two-stage method yields superior results, where
models that incorporate a Slot Attention module in the first stage outperform regular VAEs.
Regression Model Alternatives: Besides HSIC regression, linear and ridge regression can
also be used for causal discovery [1, 3]. However, they are limited by requiring that all vari-
ables are on the same scale [1] because they use MSE to compare regression losses between
two directions, and variables on different scales can lead to false judgment. Unfortunately,
such a requirement cannot be guaranteed in CRL. As shown in Tab. 4, HSIC regression
achieves the best performance because of being free of such a constraint.
Discussion on RCDM: Since all causal graphs have at least one root cause that should
only be controlled by itself, including RCDM can help the model to identify the root causes
and enforce the self-dependency property. As shown in Tab. 5, comparing Row1,3, having
RCDM boost FMIC

1 and FT IC
1 . Comparing Row2,3, instead of replacing the values of the

detected root cause factors with their average, simply swapping them with each other ignores
the self-dependency property of root cause factors, which can degrade the CRL performance,
especially under sophisticated scenarios.

6 Conclusion
In this study, we introduce Causal-Macro, a method that first learns fine-scale representations
and then uncovers causal relationships at a broader scale using tools like Effect-Swap, HSIC
regression, and RCDM. We also develop the Shadow datasets to intensify challenges in
Causal Representation Learning (CRL) and improve real-world datasets through curation.
Our experiments across these datasets showcase our method’s superiority, corroborated by
detailed ablation studies of Causal-Macro.
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