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1 Hybrid Quantization algorithm
In this section, we provide details about the hybrid quantization algorithm. The Hybrid
Quantization algorithm Algorithm 1 is based on the signal-to-quantization-noise ratio (SQNR)
metric. We require a deep learning model ViT, calibration data, and a sample dataset to ex-
ecute the algorithm. These two datasets are separate; one is used to calibrate the model, and
the other is used to evaluate the sensitivity of the models to quantization.

First, we need to quantize the ViT model both dynamically and statically. The signal is
then measured at the nodes of the linear layers N located between the quantized and reference
models. Depending on the variant of the HQ algorithm, the signal is routed between the
quantized model and the reference.

The HQ1 algorithm routes activations from the quantized model to the reference model.
The HQ2 algorithm routes activations through individual networks. In HQ3, the activation
of the reference model is quantized and propagated through the quantized model.

Finally, after selecting the layers, the model is calibrated using a calibration dataset and
evaluated on the ImageNet1K validation dataset.

2 Additional experimental results
Here, we presented complementary experimental results of the hybrid quantization algo-
rithms. In Table 1, we presented full ingestion of the best models attained with HQ and
FQ-ViT methods. Additionally, in Table 2, we presented the mean and standard deviation
out of the five runs that extend the results available in the main text and the Table 1. Fig-
ure 1 presented the latency measurements on the third environment - cloud CPU-only server
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with Intel Xeon 5218 Gold. Finally, Figure 2 showed the static to dynamic linear layers
quantization ratio.

Most of the models in the ViT family experienced low variability in top-1 accuracy when
we applied hybrid quantization algorithms, as shown in Table 2. The exceptions were the
ViT-B/16/224 and ViT-B/16/384 for HQ1 and HQ3, and the ViT-S/32/224 and ViT-S/32/384
for HQ3. Nevertheless, we observed an average speedup over dynamic quantization of 1.13

Algorithm 1 Post-training Hybrid Quantization algorithms. The specific operations in the
HQ1, HQ2, and HQ3 algorithms are shown in the tables below. The remaining steps are
common to all variants.
Require:

The dataset Ds = {s1,s2, . . . ,si} containing i samples
The calibration dataset Dc = {s1,s2, . . . ,s j} containing j calibration samples
Neural network ViT = { N1 ,N2, . . . ,Nm} consisting of m nodes
Static quantization function QS; Dynamic quantization function QD

Dequantize function D; Calibration function calibrate

ViTS←QS(calibrate(ViT,Dc)); ViTD←QD(ViT)
Initialize SQNR list L
for si ∈ Ds do

Y S←QS(si); Y D←QD(si); Y ← si
for Nk ∈ ViT, N S

k ∈ ViTS, ND
k ∈ ViTD do

HQ1 HQ2 HQ3
ZS←Nk(D(Y S)) Y S←N S

k (Y
S) Y S←N S

k (QS(Y ))

Y S←N S
k (Y

S) Y D←ND
k (Y D) Y D←ND

k (QD(Y ))
ZD←Nk(D(Y D)) Y ←Nk(Y )

Y D←ND
k (Y D)

if Nk is a linear layer then
HQ1 HQ2 & HQ3

ωS← SQNRS(ZS,Y S) ωS← SQNRS(Y,Y S)

ωD← SQNRD(ZD,Y D) ωD← SQNRD(Y,Y D)

Store (Nk,ω
S,ωD) in L

end if
end for

end for
LG← Group the list L by Nk
for Nk,ω

S,ωD ∈ LG do
ω̄S← 1

n ∑
n
i=1 ωS

i ; ω̄D← 1
n ∑

n
i=1 ωD

i
if ω̄S ≥ ω̄D then

Select Nk for static quantization
else

Select Nk for dynamic quantization
end if

end for
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and 1.64 for ViT-B/16/224 and 1.23 and 1.65 for ViT-B/16/384 on an NVIDIA A100 GPU
for the HQ1 and HQ3 algorithms, respectively. For the same models on a mobile A15 CPU,
we achieved average speedups over dynamic quantization of 1.07 (HQ1), 1.21 (HQ3), 1.18
(HQ1), and 1.51 (HQ3); see Table 3 and Figure 1. Moreover, in Figure 4, we presented
ViT-B/32/384 and ViT-L/32/384 latency versus accuracy trade-off plots. On the one hand,
on average, we improved the latency of ViT-B/32/384 compared to static quantization. On
the other hand, on average, except for the best model, the performance of the top-1 accuracy
is degraded. HQ1 and HQ3 algorithms improved latency compared to dynamic quantization,
with the best models for ViT-L/32/384 also achieved better accuracy than static quantization.
In the ViT family models, we observed that the HQ2 algorithm preferred dynamic quantiza-
tion over static linear layers. Meanwhile, HQ1 and HQ3 balanced the distribution of static
and dynamic quantization; see Figure 2.

The DeiT models were the most robust to quantization. As a result, we achieved low
variance in our evaluation while maintaining top-1 accuracy close to static quantization; see
Table 2. Nevertheless, we improved the latency of the DeiT models compared to dynamic
quantization by an average of 2.02 and 1.66 for HQ1 and HQ3, respectively, on a GPU-
powered workstation; see Table 3.

Within the DeiT3 family models, we observed a small variance in most of the models,
except for two outliers: DeiT3-B/16/224 and DeiT3-L/16/224; see Table 2 and Figure 3.
However, within those models, we achieved up to 1.80 and 1.69 speedup compared to dy-
namic quantization on an NVIDIA A100 GPU. As for the mobile A15 CPU, we obtained up
to 1.27 and 1.16 speedup compared to dynamic quantization. On average, we observed up
to 1.33 and 1.72 for mobile A15 CPU and A100 GPU-powered workstations for the whole
family of the models as presented in Table 3. We provided additional examples in Figure 4
of DeiT3-S/16/224 and DeiT3-B/16/384, where HQ1 and HQ3 achieved the best trade-offs
of latency versus accuracy compared to dynamic and static quantization.

Finally, we observed similar robustness to quantization within the Swin Transformer
models. Our algorithms for these models selected most static linear layers for quantization
(see Figure 2), as they were found to be more robust to quantization errors than dynamically
quantized linear layers.
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Model FP32 INT8 INT8-D HQ1 HQ2 HQ3 FQ-ViT

ViT-T/16/224 75.47 9.02 71.66 9.27 12.41 13.18 45.80
ViT-T/16/384 78.42 7.65 74.98 9.90 11.05 10.55 45.18
ViT-S/16/224 81.39 77.01 79.34 77.12 73.43 77.05 78.58
ViT-S/16/384 83.80 79.40 82.46 76.81 77.08 79.77 81.61
ViT-S/32/224 75.99 45.59 74.38 60.93 59.43 60.58 59.13
ViT-S/32/384 80.48 59.77 79.06 71.84 71.62 71.25 68.43
ViT-B/16/224 85.10 73.15 84.15 71.76 70.27 74.89 83.70
ViT-B/16/384 86.00 51.05 85.31 48.82 48.75 51.78 84.11
ViT-B/32/224 80.71 71.35 79.13 75.10 74.99 74.57 70.99
ViT-B/32/384 83.35 81.32 82.70 81.44 80.49 81.16 81.37
ViT-L/16/224 85.85 84.30 85.48 83.94 84.18 84.40 84.97
ViT-L/32/384 81.51 80.62 81.36 80.91 80.35 80.75 81.36

DeiT-T/16/224 72.18 71.63 71.71 71.51 70.76 71.43 71.05
DeiT-T/16/224∗ 74.50 74.16 74.06 74.03 73.31 73.94 73.63
DeiT-S/16/224 79.85 78.84 79.14 78.70 78.32 78.74 78.49
DeiT-S/16/224∗ 81.22 80.75 80.79 80.86 80.66 80.68 80.42
DeiT-B/16/224 81.99 78.23 81.30 78.40 78.17 78.67 80.96
DeiT-B/16/224∗ 83.39 82.92 82.48 82.87 82.96 82.51 82.48

DeiT3-S/16/224 81.37 78.95 80.63 79.42 78.93 79.26 79.62
DeiT3-S/16/384 83.43 80.39 82.91 80.89 80.81 80.80 81.28
DeiT3-M/16/224 83.09 79.47 82.74 79.72 79.59 79.56 82.1
DeiT3-B/16/224 83.79 76.54 83.51 80.81 80.40 80.15 0.10
DeiT3-B/16/384 85.07 80.98 84.79 82.19 82.99 81.99 0.10
DeiT3-L/16/224 84.78 71.77 84.61 83.27 82.01 80.29 0.10

Swin-T/4/224 81.37 79.19 81.01 79.33 79.36 79.28 80.02
Swin-S/4/224 83.30 82.70 83.26 82.69 82.74 82.69 82.40
Swin-B/4/224 85.27 84.19 84.99 84.16 84.21 84.18 82.50
Swin-L/4/224 86.32 85.72 86.28 85.77 85.78 85.75 85.61

Table 1: Comparison between baseline (FP32), static quantization (INT8), dynamic quanti-
zation (INT8-D), hybrid quantization (HQ1, HQ2, and HQ3), and FQ-ViT. We report top-1
accuracy on the ImageNet1K dataset. In this experiment we present the best model out of 5
runs. We reproduce and extend the results of FQ-ViT. The superscript ((∗)) in DeiT denotes
the distilled version. In bold we mark the best result between HQ and FQ-ViT.
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Figure 1: CPU-only workstation: Average Intel Xeon 5218 Gold CPU inference latency of
models. Each point represents a single quantization configuration. We report the average
latency of linear layers over 1000 samples.

Figure 2: Percentage of dynamic quantized layers in models. The X-axis represents the
model, while the Y-axis represents the ratio of dynamic to static layers. Higher values rep-
resent more dynamic layers in the model after quantization. Points represent the average of
the ratio over five runs, with the standard deviation plotted.
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Model HQ1 HQ2 HQ3

ViT-T/16/224 8.32±0.62 12.25±0.13 10.84±1.51
ViT-T/16/384 7.75±1.52 10.01±0.82 8.22±1.75
ViT-S/16/224 76.80±0.21 73.12±0.21 74.70±1.20
ViT-S/16/384 76.60±0.20 76.99±0.08 78.63±1.31
ViT-S/32/224 60.26±0.47 59.24±0.15 54.27±7.19
ViT-S/32/384 71.35±0.35 71.35±0.19 64.25±5.73
ViT-B/16/224 68.64±2.38 69.81±0.34 71.59±1.87
ViT-B/16/384 43.83±4.17 46.17±1.90 48.00±2.23
ViT-B/32/224 73.81±1.35 74.00±1.07 72.65±1.33
ViT-B/32/384 81.06±0.30 80.16±0.23 80.68±0.39
ViT-L/16/224 83.80±0.09 84.01±0.14 84.19±0.24
ViT-L/32/384 80.68±0.14 80.18±0.11 80.45±0.32

DeiT-T/16/224 71.40±0.08 70.69±0.05 71.13±0.22
DeiT-T/16/224∗ 73.88±0.12 73.30±0.02 73.71±0.16
DeiT-S/16/224 78.41±0.15 78.18±0.14 78.53±0.15
DeiT-S/16/224∗ 80.78±0.07 80.21±0.23 80.48±0.14
DeiT-B/16/224 78.28±0.09 78.07±0.08 78.48±0.21
DeiT-B/16/224∗ 82.83±0.02 82.89±0.04 81.77±0.85

DeiT3-S/16/224 79.30 ± 0.12 78.77 ± 0.10 79.09 ± 0.12
DeiT3-S/16/384 80.78 ± 0.07 80.69 ± 0.07 80.68 ± 0.08
DeiT3-M/16/224 79.60 ± 0.10 79.55 ± 0.03 79.42 ± 0.12
DeiT3-B/16/224 61.78 ± 25.13 58.83 ± 24.69 70.58 ± 18.00
DeiT3-B/16/384 82.08 ± 0.09 81.62±1.39 81.69±0.22
DeiT3-L/16/224 72.26 ± 7.16 71.48 ± 7.52 73.07 ± 4.55

Swin-T/4/224 79.27±0.04 79.24±0.08 79.17±0.11
Swin-S/4/224 82.65±0.03 82.67±0.04 82.64±0.03
Swin-B/4/224 84.10±0.03 84.15±0.04 84.13±0.05
Swin-L/4/224 85.66±0.07 85.71±0.04 85.67±0.05

Table 2: Average top-1 accuracy with standard deviation on the ImageNet1K dataset com-
puted over five runs. For DeiT models with ((*)), we denote the distilled version. Our method
improves the top-1 accuracy over the reference INT8 static model in 12/12 ViT, 3/6 DeiT,
6/6 DeiT3, and 4/4 Swin models.
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A15 CPU A100 GPU
Model HQ1 HQ2 HQ3 HQ1 HQ2 HQ3

ViT-T/16/224 1.17 1.00 1.20 1.90 1.00 1.88
ViT-T/16/384 1.39 1.00 1.43 1.71 1.00 1.66
ViT-S/16/224 1.23 1.00 1.21 1.84 1.00 1.70
ViT-S/16/384 1.35 1.00 1.48 1.49 1.00 1.71
ViT-S/32/224 1.41 1.00 1.28 2.14 1.03 1.63
ViT-S/32/384 1.21 1.00 1.16 1.92 1.00 1.62
ViT-B/16/224 1.07 1.00 1.21 1.13 1.00 1.64
ViT-B/16/384 1.18 1.00 1.51 1.23 1.00 1.65
ViT-B/32/224 1.36 1.13 1.32 1.97 1.26 1.72
ViT-B/32/384 1.22 1.02 1.18 1.99 1.05 1.74
ViT-L/16/224 1.16 1.01 1.22 1.41 1.02 1.64
ViT-L/32/384 1.08 1.03 1.12 1.40 1.14 1.64

ViT - Avg. all 1.23 1.01 1.28 1.68 1.04 1.68

DeiT-T/16/224 1.25 1.00 1.18 2.21 1.01 1.70
DeiT-T/16/224∗ 1.25 1.00 1.23 2.16 1.01 1.73
DeiT-S/16/224 1.17 1.00 1.18 1.66 1.00 1.66
DeiT-S/16/224∗ 1.43 1.61 1.25 2.51 1.22 1.66
DeiT-B/16/224 1.20 1.20 1.23 1.41 1.50 1.53
DeiT-B/16/224∗ 1.44 1.01 1.24 2.15 4.3 1.65

DeiT - Avg. all 1.29 1.15 1.21 2.02 1.67 1.66

DeiT3-S/16/224 1.22 1.01 1.22 1.81 1.00 1.87
DeiT3-S/16/384 1.74 1.01 1.50 1.91 1.01 1.67
DeiT3-M/16/224 1.17 1.00 1.20 1.55 1.00 1.76
DeiT3-B/16/224 1.17 1.00 1.27 1.47 1.00 1.80
DeiT3-B/16/384 1.50 1.01 1.42 1.88 1.00 1.57
DeiT3-L/16/224 1.16 1.00 1.15 1.69 1.00 1.49

DeiT3 - Avg. all 1.33 1.01 1.29 1.72 1.01 1.69

Table 3: The extended version of the average speedup latency improvement is over five runs
of hybrid quantization compared to the dynamic quantization for ViT families for the iPhone
13 Pro smartphone with an A15 CPU and a workstation with an NVIDIA A100 GPU. In
bold, we mark the best latency speedup for each environment.
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Figure 3: Latency vs accuracy trade-off of HQ algorithms compared to static quantization
(INT8) and dynamic quantization (INT8-D) measured on an NVIDIA A100 GPU. We plot
the mean and standard deviation for all the runs. The point marked with a diamond corre-
sponds to the model that offers highest accuracy. The results above and left to the dotted red
line indicate improvement in accuracy compared to static quantization and latency compared
to dynamic quantization, respectively.
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Figure 4: Latency vs accuracy trade-off of HQ algorithms compared to static quantization
(INT8) and dynamic quantization (INT8-D) measured on an NVIDIA A100 GPU. We plot
the mean and standard deviation for all the runs. The point marked with a diamond corre-
sponds to the model that offers highest accuracy. The results above and left to the dotted red
line indicate improvement in accuracy compared to static quantization and latency compared
to dynamic quantization, respectively.


