

# SuperLoRA: Parameter-Efficient Unified Adaptation of Large Foundation Models

Xiangyu Chen<sup>1,2</sup>,Jing Liu<sup>2</sup>,Ye Wang<sup>2</sup>,Pu (Perry) Wang<sup>2</sup>,Matthew Brand<sup>2</sup>,Guanghui Wang<sup>3</sup>,Toshiaki Koike-Akino<sup>2</sup>1University of Kansas, Lawrence, KS 66045, USA2Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139, USA3Toronto Metropolitan University, Toronto, ON M5B 2K3, Canadaxychen@ku.edu, {xiachen, jiliu, yewang, pwang, brand, koike}@merl.com, wangcs@torontomu.ca

# Motivation

LoRA - look at each weight matrix  $W_0$  separately; SuperLoRA -

### Method

SuperLoRA in one formula:



### only care about the total number of parameters to update $W_{0_{total}}$



 $\Delta W_{\text{group}_g} = \mathcal{F}\left(\bigotimes_{k=1}^{\kappa} \left(C_{gk} \times_1 A_{gk1} \times_2 \cdots \times_M A_{gkM}\right)\right),$ 





# Experiments - Image Classification (ImageNet->CIFAR)





| 0 0 0 00 00 00 00 00           |
|--------------------------------|
|                                |
| 2222222                        |
| 13 3 3 3 3 3 3 3               |
| 4 4 4 4 4 4                    |
| 3 35 5:5 5 5 5                 |
| 6 2 0 6 6 6 6 6                |
| 17 7 7 7 7 7 7                 |
| 88888888                       |
| O O O O O O O O  O O O O O O O |
|                                |

## Vis. (# params 32) Experiments - E2E Challenge

Table: GPT-2 medium with different adaptation methods on E2E NLG Challenge. For all metrics, higher is better. \* indicates numbers published in prior works, as compiled by [2].

| Method                               | # Trainable | E2E NLG Challenge         |                          |                           |                          |                          |
|--------------------------------------|-------------|---------------------------|--------------------------|---------------------------|--------------------------|--------------------------|
|                                      | Parameters  | BLEU                      | NIST                     | MET                       | ROUGE-L                  | CIDEr                    |
| FT*                                  | 354.92M     | 68.2                      | 8.62                     | 46.2                      | 71.0                     | 2.47                     |
| Adapter <sup>L</sup> *               | 0.37M       | 66.3                      | 8.41                     | 45.0                      | 69.8                     | 2.40                     |
| Adapter <sup>L</sup> *               | 11.09M      | 68.9                      | 8.71                     | 46.1                      | 71.3                     | 2.47                     |
| Adapter <sup>H</sup> *               | 11.09M      | $67.3_{\pm.6}$            | $8.50_{\pm.07}$          | $46.0_{\pm.2}$            | $70.7_{\pm.2}$           | $2.44_{\pm.01}$          |
| FT <sup>Top2</sup> *                 | 25.19M      | 68.1                      | 8.59                     | 46.0                      | 70.8                     | 2.41                     |
| $FT^{W_{\mathrm{q}},W_{\mathrm{v}}}$ | 48.00M      | $69.4_{\pm.1}$            | $8.74_{\pm.02}$          | $46.0_{\pm.0}$            | $71.0_{\pm.1}$           | $2.48_{\pm.01}$          |
| LoRA                                 | 0.40M       | $69.28_{\pm.01}$          | $8.73_{\pm.08}$          | $46.51_{\pm.00}$          | $71.4_{\pm.00}$          | $2.49_{\pm.02}$          |
| SuperLoRA                            | 0.12M       | $\textbf{69.82}_{\pm.00}$ | $\textbf{8.76}_{\pm.02}$ | $\textbf{46.54}_{\pm.00}$ | $\textbf{71.5}_{\pm.00}$ | $\textbf{2.50}_{\pm.01}$ |

# SuperLoRA and its derivation

Table: Hyperparameter settings in SuperLoRA and resultant LoRA variant.

| hyper-parameters settings                                         | method   |
|-------------------------------------------------------------------|----------|
| $\mathcal{F} = I$ , weight-wise, $K = 1$ , $C_{g1} = I$ , $M = 1$ | dense FT |
| $\mathcal{F} = I$ , weight-wise, $K = 1$ , $C_{g1} = I$ , $M = 2$ | LoRA [2] |
| $\mathcal{F} = I$ , weight-wise, $K = 2$ , $C_{gk} = I$ , $M = 2$ | LoKr [3] |
| $\mathcal{F} = I$ , group-wise, $G = 1$ , $M > 2$                 | LoTR [1] |
| $\mathcal{F} = I$ , group-wise, $K > 2$ , $C_{gk} = I$ , $M = 2$  | LoNKr    |
| $\mathcal{F} = I$ , group-wise, $K = 1$ , $M > 2$                 | LoRTA    |

Table: Hyperparameters and notation.

#### notation description

- r rank of factorization
- $\mathcal{F}$  mapping function
- $\rho$  compression ratio
- G number of groups
- M order of tensor modes
- K number of splits

#### References

- [1] Bershatsky, D., Cherniuk, D., Daulbaev, T., Oseledets, I.: LoTR: Low tensor rank weight adaptation. arXiv preprint arXiv:2402.01376 (2024)
- [2] Hu, E.J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., et al.: LoRA: Low-rank adaptation of large language models. In: International Conference on Learning Representations (2021)
- [3] Yeh, S.Y., Hsieh, Y.G., Gao, Z., Yang, B.B.W., Oh, G., Gong, Y.: Navigating text-to-image customization: From lyCORIS fine-tuning to model evaluation.
  In: The Twelfth International Conference on Learning Representations (2024)

Xiangyu Chen $^{1,2}$ , Jing Liu $^2$ , Ye Wang $^2$ , Pu (Perry) Wang $^2$ , Matthew Brand $^2$ , Guanghui Wang $^3$ , Toshiaki Koike-Akino $^{21}$  University of Kansas,