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1 Pipeline Review
Fig. 1 depicts the whole pipeline of Hybrid-CSR. From the template meshes MT , Hybrid-
CSR first obtains coarsely deformed cortical meshes Mc, given which, we estimate the
positions and normals of upsampled oriented point cloud Oup. Then the cortical surfaces M̂
can be reconstructed via poisson surface reconstruction from Oup. To fix the topology defects
in M̂, we extract non-zero level set from the signed distance grids, obtaining topologically
correct meshes M̂tc′ , and apply optimization-based diffeomorphic registration to recover the
accurate and smooth genus-0 cortical surfaces M̂tc. Lastly, we refine M̂tc using a learning-
based diffeomorphic transformation model, to achieve our final reconstruction results M̂ f .

2 Implementation Details
Hybrid-CSR framework is implemented using PyTorch [9] and executed on a system equipped
with an NVIDIA RTX A6000 GPU and an Intel i7-7700K CPU.
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Figure 1: The pipeline of Hybrid-CSR.

2.0.1 Network Architecture

To model contour displacements, we encoder positions with random Fourier mapping [12]
and approximate the deformation field with a SIREN [11] model. The gaussian scale and
embedding length of position encoding are 5 and 128. The hidden features size and hidden
layers number are 256 and 2. Our hybrid method directly optimizes the positions and normals
of oriented points.

2.0.2 Optimization

To optimize neural fields for contour deformation, 1000 points with normals are separately
sampled from ground truth contour and deformed coutour in each iteration. The loss function
consists of geometry-consistency loss and regularization loss. For the geometry-consistency
loss, we add up the chamfer distance Lcd and normal distance Lnd between two sets of 1000
sampled oriented points. The regularization loss consists of edge length Ledge [13], as well
as normal consistency regularization Lnc. The total mesh loss is as below:

L= Lcd +0.02∗Lnd +0.005∗Ledge +0.005∗Lnc (1)

We apply Adam optimizer [6] with a learning rate of 1e−4 for 3000 iterations to update the
parameters of neural fields.

For the hybrid method, we first uniformly sample 1000 points with normals from the
deformed contour obtained above, as initializations. To optimize the positions and normals
of oriented points, we minimize the L2 loss between the indicator map reconstructed from
the ground truth and the optimized oriented points. We apply Adam optimizer with a learning
rate of 3e−3 for 1000 iterations.

2.0.3 Results of diffeomorphic transformation

Figure 2: Explicit contour representation
by diffeomorphic transformation from cir-
cle source contour.

In NMF [4], they present that diffeomorphic
transformation can avoid the “regularizer‘s
dilemma”, but in our toy experiment, we found
neural ode (NODE) [2] is not suitable to model
large and sharp deformations, as is shown in
Fig. 2. We model the dynamic function of
NODE, i.e., neural velocity fields, using the
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same neural fields as that for contour defor-
mation and optimize with only chamfer dis-
tance and normal distance without any regu-
larization loss, optimized via Adam optimizer

with a learning rate of 1e−4 for 3000 iterations.

2.1 Coarse Mesh Deformation
2.1.1 Network Architecture

We apply Vox2Cortex [1] to deform template meshes. Same as Vox2Cortex,

• we train the volumetric segmentation branch and mesh deformation branch end-to-
end;

• volumetric segmentation branch is based on the Res-Unet;

• we take four cortical surfaces template as one and use residual GCN-based modules
to encode features on graphs;

• we use the same feature extraction strategy. That is, in the first step of mesh deforma-
tion, the volumetric feature associated with meshes vertices are from the 4th, 5th, 6th
and 7th layers of Res-Unet. And in the second step of mesh deformation, the meshes
vertices are extracted from the 3rd, 4th, 7th and 8th layers of Res-Unet;

Different from Vox2Cortex, in the coarse mesh deformation module of Hybrid-CSR

• we deform template meshes in two steps, instead of four steps. In other words, our
superiority in performance doesn’t come from more steps of surface reconstruction;

• In both training and inference, we use smaller templates (≈ 42000 vertices per sur-
face).

2.1.2 Training

Same as Vox2Cortex, we apply the loss function composed of voxel loss Lvox, curvature-
weighted chamfer loss L, normal distance, laplacian smoothing, normal consistency as well
as edge length regularizations. The coarse mesh deformation module as well as segmentation
branch are first optimized for 50 epochs and then they will be optimized together with the
oriented point cloud estimation module for another 100 epochs. The other implementation
details can be found in the supplementary material of Vox2Cortex.

2.2 Oriented Point Cloud Estimation
2.2.1 Gated Linear Unit (GLU) for Point Estimation

Let S denote the upsample ratio, pup
i ∈ RS×3 denote the position of upsampled oriented

point clouds, vup
i ∈ RS×3 denote the vertex of deformed meshes repeated by S times and pup

i
denote the upsampled displacements of vertex vi. Let’s also define the intermediate position
of upsampled oriented point clouds as p′up

i ∈ RS×3, such that

pup
i = (1−mi)⊙ vup

i +mi ⊙ p′up
i (2)
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where each dimension of mi is between 0 and 1, controlling the “confidence” of the inter-
mediate results. We can represent p′up

i as vup
i +d′

i, where d′up
i is intermediate displacement

associated with upsampled vertex vup
i . Therefore, the Eq. 2 can be rewritten as:

pup
i = vup

i +mi ⊙d′up
i (3)

As we have demonstrated in the main paper, using GLU, the displacements can be written
as di = (W0fi +b0)⊙σ(W1fi +b1). Then, we have

(W0fi +b0)⊙σ(W1fi +b1) = mi ⊙d′up
i (4)

Thus, we suppose W0 ∈R(S×3)×(dout+S×3) and b0 ∈R(S×3) modulate the displacement vector,
while W1 ∈ R(S×3)×(dout+S×3) and b1 ∈ R(S×3) modulate the “confidence ” of the predicted
displacement vector. In our experiments, S = 7 and dout = 64.

2.2.2 Network Architecture for Normal Estimation

Figure 3: Network Architecture of Normal Estimation Module. We apply GCN to encode
features on graph and GLU to estimate normals of upsampled positions.

As is shown in Fig. 3, GCN is used to encode features on graph and GLU is used to
estimate normals of upsampled positions. The input of GCN is the concatenation of grouped
positions, grouped image features associated with points and graph feature generated by the
previous GCN layer. The positions and associated features will be grouped into the same
node if they are displaced from the same vertices. We sample the image features from the
2nd, 3rd, 8th and 9th layers of Res-Unet given the point positions via linear interpolation,
and the channel number of these volumetric features are 32, 64, 16 and 8. The graph feature
from the previous layer is in length of 64. Thus, the input feature channel number of GCN
is S∗ (3+(32+64+16+8))+64 = 925 and the output feature channel number is 64.

The output of GCN concatenated with the grouped positions is taken as the input of GLU,
whose input feature channel number is therefore 64+S ∗3 = 85. The output of GLU is the
normals of upsampled point clouds, thus the output channel number is S∗3 = 21.

2.2.3 Training

We apply weighted mean square error LDPSR to measure the difference between predicted
and ground truth indicator grids. The weight map is the smoothed edge map of the ground
truth indicator grid. Together with mesh-based loss proposed in Vox2Cortex, LDPSR is used
to optimize Hybrid-CSR in an end-to-end manner for additional 100 epochs. The parameters
of oriented point cloud estimation module are optimized via an Adam optimizer of a learning
rate of 5e−5.
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2.3 Topology Correction

We model the neural velocity fields Fθ , using the same network architecture as described in
Sec. 2.0.1 and Sec. 2.0.3. In the forward pass, the destination position p̂tc ∈ V̂tc starting from
p̂tc′ ∈ V̂tc′ is estimated by integrating Fθ (p) from t = 0 to t = 1 via 4th-order Runge–Kutta
methods with step size being 0.2. For backpropagation, NODE adopts the adjoint sensitivity
method [10], which retrieves the gradient by solving the adjoint ODE backwards in time and
allows solving with O(1) memory usage no matter how many steps the ODE solver takes.
The network parameters θ are optimized with chamfer distance using the Adam optimizer
for 75 iterations with a step size of 3e-4. To compute the chamfer distance, we sample
150,000 points with normals from both M̂tc and M̂tc′ per iteration. Other implementation
details are included in the main paper.

Different from the toy example, in the procedure of topology correction, the source sur-
face M̂tc′ and target surface M̂tc have already been well-aligned, so that diffeomorphic
transformation optimized by chamfer distance is able to provide accurate surface registra-
tion performance.

2.4 Surface Refinement

The network architecture of surface refinement is the same as CortexODE [7]. But there are
some differences in training pial surface refinement model. In the original CortexODE, they
learn to map the ground truth WM surface to the ground truth pial surface. Since the ground
truth WM and pial surface share the same topology, they can train with the L2 distance.
However, during inference, the source surface is the predicted WM surface obtained from
Marching Cubes so there exists a discrepancy between inference and training. Instead, we
learn to map the topological correct pial surface to the ground truth pial surface, supervised
by chamfer distance. And during inference, the initial pial surface is also generated by
the topology correction procedure. In terms of other implementation details, we follow the
original CortexODE.

3 Dataset

ADNI We use a subset of the ADNI dataset [5] containing a total of 419 T1-weighted
(T1w) brain MRI from subjects aged from 55 to 90 years old. We stratify the dataset into
299 scans for training (≈ 70%), 40 scans for validation(≈ 10%), and 80 scans for testing
(≈ 20%). We report all of our experiment results on the test set.

OASIS For the OASIS dataset [8], we use all of 416 T1-weighted (T1w) brain MRI im-
ages. We stratify the dataset into 292 scans for training (≈ 70%), 44 scans for validation
(≈ 10%), and 80 scans for testing (≈ 20%). We report all of our experiment results on the
test set.

Test-retest To analyze the consistency of our approach, we evaluate all 120 scans from
three different subjects, where each subject is scanned twice in 20 days.

Citation
Citation
{Pontryagin} 1987

Citation
Citation
{Ma, Li, Robinson, Kainz, Rueckert, and Alansary} 2022

Citation
Citation
{Jackprotect unhbox voidb@x protect penalty @M  {}Jr, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, L.protect unhbox voidb@x protect penalty @M  {}Whitwell, Ward, etprotect unhbox voidb@x protect penalty @M  {}al.} 2008

Citation
Citation
{Marcus, Wang, Parker, Csernansky, Morris, and Buckner} 2007



6 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

Figure 4: Visual Comparison on OASIS dataset
3.1 Visual Comparisons on OASIS dataset
Fig. 4 present comparisons on OASIS dataset, between our Hybrid-CSR and other competing
methods, including Vox2Cortex, CorticalFlow++, CortexODE as well as DeepCSR [3].
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