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2 Background and Related Work

2.1 Sources of Uncertainty and Calibration

Figure 1: A Bayesian neural network predicts that aleatoric uncertainty is generally greater
at object edges and boundaries due to limited pixel resolution, while epistemic uncertainty
is more prevalent within objects, relating to uncertainties in classifying the object itself.
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3 Methodology

3.1 Efficient Network Design

Methods mIOU Params (d) ↓ Params (t) ↓ GFLOPs ↓ T (ms) ↓ Mem

Regular 63.91 1.52 3.34 2.26 8.03 103
Depthwise 64.60 0.19 2.00 1.38 7.88 124
Inv-Res-0.75 65.69 1.04 2.06 1.56 10.54 167
Inv-Res-Bl 66.61 1.86 3.67 2.24 11.47 178

Table 1: Different decoder designs. Params (d): number of parameters for decoders in
millions, Params (t): total number of parameters of the network in millions, T: inference
time measured in ms on GPU, Mem: memory usage measured in MB on GPU.

We evaluate the performance of the network using mIOU, and we quantify the efficiency
of the network using the number of parameters, FLOPS, runtime, and memory requirement.
Training details follow the same recipe that is described in Section ??.

Table 1 shows the results of the preliminary experiment. First, we see that the depthwise
decoder does in fact reduce the number of parameters in the decoder by about 8-fold, and
achieves the fastest inference speed out of all three experiments. Furthermore, it does not
hurt performance compared to regular decoders. Our results show that the inverted resid-
ual design achieves the highest mIOU of 66.61, but uses most parameters out of all three
experiments.

For fair comparison to the depthwise decoder, we reduce the number of total parame-
ters of inv-Res via width and depth scaling by a factor of 0.75 (Inv-Res-0.75) on both the
encoder and the decoder to obtain around 2M parameters. The scaled-down version of the
network has an encoder that is strictly worse than the regular encoder, so one would expect
performance to decrease. However, we show that even with the same number of parameters,
the inverted residual design still outperforms the depthwise decoder. This suggests that the
inverted residual decoder is able to recover a significant portion of the information lost in the
decoder, and the performance-to-parameter trade-off is better.

3.2 Bayesian Inference with Stochastic Depth

3.2.1 MC Dropout

(a) (b)
Figure 2: Example illustration of how dropout layers work with two layers of units. a) shows
a fully connected layer with all units activated, b) shows the same layers with only 50% of
the units activated.
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3.2.2 Stochastic Depth

(a) Baseline. (b) Baseline with stochastic depth.
Figure 3: Example illustration of how stochastic depth could be applied to the baseline
network. a) shows the network with all blocks activated, and b) shows an instance of a
shallower network with stochastic depth, where blocks with dashed lines indicate blocks
that are turned off (i.e., bypassed with identity functions).

3.3 Metrics: Network Performance
We evaluate the network’s performance mainly by mIOU, but we also monitor global and
average accuracy. We define these metrics below.

3.3.1 Accuracy (global)

Given predicted pixel ŷi and corresponding ground truth label yi, we define global accuracy
as

Accuracy(g) =
1
N

N

∑
i

I[ŷi = yi] (1)

where N defines the total number of pixels. This is usually denoted as Acc(g) in our tables.

3.3.2 Accuracy (average)

A downside of using global accuracy is that it doesn’t take the frequency of each class into
account, which means that the metric is biased towards classes with larger areas. We further
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define per-class or average accuracy, which is not influenced by the frequency of each class:

Accuracy(c) =
1
C ∑

c

1

∑
N
i I[yi = c]

N

∑
i

I[ŷi = yi] (2)

where C is the total number of classes. This is usually denoted as Acc(c) in our tables.

3.3.3 Intersect-over-union (IOU)

Let C be the total number of classes, we further define per-class true positives NT P
c , false

positives NFP
c , and false negatives NFN

c as:

NT P
c = ∑

i,c
I[ŷi = yi|yi = c]

NFP
c = ∑

i,c
I[ŷi ̸= yi|ŷi = c]

NFN
c = ∑

i,c
I[ŷi ̸= yi|yi = c]

We define per-class IOU as the ratio between the intersect (y∧ ŷ) and the union (y∨ ŷ),
which in practice would be computed as:

IOUc =
NT P

c

NT P
c +NFP

c +NFN
c

(3)

and mean IOU as:

mIOU =
1
C ∑

c

NT P
c

NT P
c +NFP

c +NFN
c

(4)

The mIOU metric is a suitable and commonly used metric in semantic segmentation, it mea-
sures the degree of "similarity" between the ground truth and prediction and puts the same
weight on each class even if classes are imbalanced in the dataset.

3.3.4 Other metrics

We also sometimes monitor the speed and cost of the networks wherever we need to compare
efficiency between networks. In particular, we measure the number of parameters of the
network and the number of FLOPs to perform one inference. Furthermore, we track the
GPU inference time and memory time averaged over 5 forward passes. These metrics help
us better evaluate the efficiency of the network.

3.4 Metrics: Uncertainty Calibration

3.4.1 Calibration Error

Two natural metrics arise from the definition of calibration. The first is Expected Calibration
Error (ECE) [12]:

E
[
|P
(
Ŷ = Y |P̂ = P

)
|
]
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It’s clear that an ECE value of 0 indicates perfect calibration. Another metric commonly
used is the Maximum Calibration Error (MCE) [12], defined as the maximum difference
between the confidence and the true accuracy:

max |P
(
Ŷ = Y |P̂ = P

)
− p|

In practice, we can compute the ECE and MCE using discrete bins described in Eq. 2 and 3.

ECE =
M

∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (5)

MCE = max
m

|acc(Bm)− conf(Bm)| (6)

3.4.2 PAvPU

In the context of computer vision tasks such as segmentation, global statistics such as ECE
and MCE are not able to capture the local quality of the segmentation. Mukhoti and Gal [11]
introduced a way of evaluating uncertainty quality for computer vision and has been adopted
by several other studies [9, 10]. The central idea of the metric is based on the statement that
a well-calibrated model should be accurate (a) when it’s confident (c), and unconfident (u)
when it’s inaccurate (i).

Let the normalized confidence value I ∈ [0,1] be the threshold of confident/unconfident.
We define nac as the number of pixels that are predicted correctly and confidently, nic be
the number of pixels that are predicted inaccurately but confidently, nau be the number of
pixels that are predicted accurately but not confidently, and niu be the number of pixels that
are predicted inaccurately and unconfidently. Mukhoti and Gal [11] further proposes that
accuracy and certainty be performed over patches of pixels by using sliding windows. We
define the accurate-certain ratio as:

p(accurate|certain) =
nac

nac +nic
(7)

Similarly, we define the inaccurate-uncertain ratio as:

p(uncertain|inaccurate) =
niu

niu +nic
(8)

Lastly, we define the uncertainty accuracy (UA), to the patch accuracy vs. patch uncertainty
(PAvPU) as:

PAvPU =
nac +niu

nac +niu +nau +nic
(9)

Clearly, networks with larger values of the above metrics are better. These metrics can be
evaluated with a particular uncertainty threshold I [11], but can also be evaluated by sliding
the uncertainty threshold from [0,1] and computing the area under the curve [9, 10]. In this
paper, we compute the area under the curve as it’s a more robust way that doesn’t require
manual tuning of the uncertainty threshold. The normalized uncertainty value is computed
using Inorm = I

Imax−Imin
, with the minimum and maximum values computed over a validation

set.
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4 Evaluation

4.0 Dataset

The Cambridge-driving labelled Video Database (CamVid) is a roadscene dataset captured
from the perspective of a driving automobile [2]. All images are semantically labelled with
11 classes such as cars, pedestrians, bicyclists, and poles. Images are captured at a resolution
of 960×720, with 367, 101, and 233 images in training, validation, and testing sets respec-
tively. Following [1], we downsize the images to 480× 360 and drop ambiguous pixels
labeled as "void" for training and evaluation.

Figure 4: Example labelled image from the CamVid Dataset (test set)

4.0.1 Image Augementation

We follow a similar image augmentation procedure as [5, 8], with random horizontal flip-
ping, followed by random color jittering, and random cropping from scale [0.7,1.3]. Finally,
the images are resized to 360×480 and normalized. Figure 5 demonstrates two examples of
images going through the augmentation pipeline. The purpose of these image augmentation
steps is to help reduce the overfitting of the network on the training set. We also note that
all "void" pixels are ignored in both loss functions and metrics, therefore we use the same
pixel value for filling in the blank space when images are scaled down (e.g. second row in
the figure).

Figure 5: Example of two images going through the augmentation process step by step, the
images are randomly flipped, jittered, and cropped. Note that the label and the image go
through the same augmentation but with random parameters each time. Image augmentation
is computed in parallel to the main training loop

Citation
Citation
{Brostow, Fauqueur, and Cipolla} 2009

Citation
Citation
{Badrinarayanan, Kendall, and Cipolla} 2017

Citation
Citation
{Hong, Pan, Sun, and Jia} 2021

Citation
Citation
{Long, Shelhamer, and Darrell} 2015



YAO, HADJIVELICHKOV, DELFAKI, LIU, PAIGE, KANOULAS: SDS BBNS 7

4.0.2 Hyperparameters

All networks are trained and tested on Google Colab with an Nvidia T4 GPU with 15GB
of RAM, and the networks are built and trained using PyTorch. Unless explicitly stated, all
experiments in this paper utilize the same hyperparameters in the training process. This is so
that we can make fair comparisons across different runs. We utilize a batch size of 10 images,
which was empirically determined to have relatively stable gradients but not using too much
memory during training. We train all experiments for 200 epochs, or equivalent to around
7400 steps. Similar to [3], we use RMSProp with an initial learning rate of 1e− 3 with a
polynomial learning rate scheduler that updates the learning rate using

(
1− iter

max_iter

)power

with power 0.9. We use a weight decay of 1e−4 to help with regularization, and unless stated
otherwise, we use dropout layers after each stage, with dropout probability linearly decaying
from 0.1 to 0 from the deepest to the shallowest layers on both encoders and decoders.
Finally, we use cross-entropy loss with no class balancing.

It’s important to note that all networks trained with 200 epochs on a polynomial learning
rate schedule are underfitted. An example of training history is shown in Figure 6, where
it’s clear that the network can still improve further. We make this choice simply due to
limited time and computational resources, and we argue that the performance of the network
at the same cut-off epoch is indicative of how well it will perform with more epochs. This
also implies that the performance of the network at the end of training is typically lower
than what it should be if more epochs are trained. We supply further experiments that use
exponential learning rate and patience 100 in Section 4.1.2 of Main Paper. Additionally, due
to different network sizes, larger networks will be more underfitted than smaller networks.

Finally, we also point out that many papers utilize three additional “tricks” to improve
results: a) pre-training on cityscape and/or ImageNet, b) fine-tuning with full-resolution im-
ages, and c) multi-scale evaluation. In this paper, we do not perform any of these techniques
to further improve results, all of our experiments are trained and tested on half-resolution
images only from the CamVid dataset.

Figure 6: The performance history of the baseline network on the training and validation
set. There tends to be a larger gap between the training and validation set on classes with
high variabilities in appearances, such as cyclists, sign symbols, and fences. Note that per-
formance on both training and validation sets has not plateaued for most classes at the end
of 200 epochs.
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4.1 Efficient Designs
4.1.1 Modifications

No skip connections This is a simple ablation test to see how effective skip connections
are. As it is commonly known, skip connections help transfer high-resolution features and
usually help with thinner classes. By removing them, we expect the network to under-
perform in classes with fine boundaries or small areas, such as fences and posts. In the
tables below we refer to this experiment as no-skip, and an illustration of the experiment
setup is shown in Figure 7a.

Dense connections With similar motivation as no skip connections, we want to see how
much can extra skip connections help with performance, and how much slower inference
becomes with the presence of more skip connections. Note that this experiment only differs
a little bit from the baseline experiment, with additional skip connections on the first and
fifth stages. We refer to this experiment as dense-skip, and it’s illustrated in Figure 7b.

Residual connections In this variation, we add the features from the encoder to the de-
coder rather than concatenating it. This is motivated by the residual block [4], where skip
connections in the form of addition can help with training networks across large depths.
Since our network is symmetrical, the output feature of each encoder block shares the exact
same shape as a corresponding output feature of a decoder block, making feature addition
possible. We refer to this experiment as add-skip, and it’s illustrated in Fig. 7c.

(a) no-skip (b) dense-skip (c) add-skip
Figure 7: Modifications to skip connections between the encoder and corresponding decoder
blocks. (a) shows the baseline network with all skip connections turned off, (b) with all skip
connections turned on, and (c) uses addition rather than concatenation to transfer features

Squeeze and Excitation We adopt the squeeze and excitation block [6] in similar fashion
to the MBConv block used in EfficientNet [15]. The squeeze and excitation block is inserted
after the inverted residual expansion block. The idea of squeeze and excitation block is

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Hu, Shen, and Sun} 2018

Citation
Citation
{Tan and Le} 2019



YAO, HADJIVELICHKOV, DELFAKI, LIU, PAIGE, KANOULAS: SDS BBNS 9

that features can be used more effectively through attention mechanisms, and that we don’t
require a significantly higher parameter count to improve performance.

Shallow decoder In this variation, we use depth = 1 in the decoder of the network. The
idea of this variation is motivated by high performing segmentation architectures that use
relatively light-weight decoders [3, 8], and the intuition is that the encoder architecture that
reduces feature resolution whilst increases feature depth is an effective enough structure on
its own. In other words, this experiment hypothesizes that decoder are closer to an implemen-
tation detail that helps to transform the encoder features into desired shapes. We abbreviate
this experiment as shallow-dec in tables.

Method Params ↓ GFLOPs ↓ Time(ms) ↓ Acc(g) ↑ Acc(c) ↑ mIOU ↑
baseline 3.67M 2.24 11.47 92.09 75.22 66.61
shallow-dec 2.59M 1.68 8.99 92.01 74.65 66.47
no-skip 3.63M 2.21 11.38 90.28 66.96 58.51
add-skip 3.63M 2.21 11.44 91.97 74.18 65.95
dense-skip 3.77M 2.27 11.48 92.03 75.97 67.17
squeeze-exc 4.56M 2.27 13.97 92.39 75.46 67.70

Table 2: Qualitative performance of network modifications.
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baseline 53.7 84.8 77.6 56.8 41.8 28.4 95.5 81.7 40.8 93.2 78.3 92.1 75.2 66.6
shallow 55.2 84.4 78.4 55.4 41.7 26.8 95.6 81.9 40.9 93.1 77.7 92.0 74.7 66.5
no-skip 47.6 82.7 75.0 50.6 27.2 1.8 94.1 77.2 21.9 90.7 74.9 90.3 67.0 58.5
add-skip 54.2 84.6 78.0 55.9 41.3 24.8 95.5 81.4 38.7 93.2 77.9 92.0 74.2 66.0
dense-skip 56.2 84.9 77.6 57.0 45.8 28.1 95.3 80.9 41.9 93.2 77.8 92.0 76.0 67.2
s-e 57.8 85.5 79.1 58.3 44.4 27.9 95.6 81.9 42.4 93.3 78.6 92.4 75.5 67.7

Table 3: Per-class metric breakdowns for experiments with modifications to skip connec-
tions.

4.1.2 Network Scaling

Width Depth Params ↓ GFLOPs ↓ Time(ms) ↓ Acc(g) ↑ Acc(c) ↑ mIOU ↑
0.5 0.5 0.67M 0.49 4.13 90.28 67.82 59.14
0.5 1.0 0.97M 0.73 6.98 90.70 69.51 60.89
1.0 0.5 2.53M 1.54 4.60 91.87 74.01 65.58
1.0 1.0 3.67M 2.24 11.47 92.09 75.22 66.61
1.0 1.5 6.98M 3.74 17.58 92.25 75.39 67.14
1.5 1.0 8.13M 4.90 14.80 92.60 78.29 69.59

Table 4: Quantitative performance of network scaling.
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Figure 8: Qualitative results of modifications to skip connections. We highlight that no-skip
produces very coarse results with smooth boundaries, as it’s unable to recover the spatial
resolution without the skip connections. On the opposite spectrum, dense-skip is able to
better predict small and thin classes such as posts and signs.



YAO, HADJIVELICHKOV, DELFAKI, LIU, PAIGE, KANOULAS: SDS BBNS 11

4.1.3 Comparison to State-of-the-Art

Name Params GFLOPs Time(ms) Acc(g) Acc(c) mIOU

Lite 0.56 0.44 3.88 90.83 69.38 61.13
Lite(+) 0.56 0.44 3.35 91.97 74.59 66.40
Medium 2.70 1.70 6.72 91.86 75.39 66.66
Medium(+) 2.70 1.70 6.72 93.16 79.78 71.63
Large 10.52 6.11 10.27 93.00 78.99 70.84
Large(+) 10.52 6.11 10.27 93.49 81.53 73.61

Table 5: Quantitative performance of Lite, Medium, and Large Networks, (+) indicates ex-
periments that have been trained for more epochs.

Method Resolution Pretrain Encoder Params (M) mIOU

FCN8 [8] 1/2 ImageNet VGG 134.5 57.0
DeconvNet [13] 1/2 ImageNet VGG 252 48.9
SegNet [1] 1/2 - - 29.5 46.4
ENet [14] 1/2 - - 0.37 51.3
Lite [ours] 1/2 - MobileNetV2 0.56 66.4
Medium [ours] 1/2 - MobileNetV2 2.70 71.6
Large [ours] 1/2 - MobileNetV2 10.52 73.9

Table 6: Comparison to state-of-the-arts that are trained and tested on half resolution.
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Figure 9: Comparison of our approach to state-of-the-art approaches, methods connected
with a dashed line belong to the same paper.

Method Resolution Pretrain Encoder Params (M) mIOU

FCDenseNet56 [7] 1/2 + F - DenseNet 1.5 58.9
FCDenseNet67 [7] 1/2 + F - DenseNet 3.5 65.8
FCDenseNet103 [7] 1/2 + F - DenseNet 9.4 66.9
BiSeNet [17] F ImageNet Xception 5.8 65.6
BiSeNet [17] F ImageNet ResNet18 49.0 68.7
DDRNet23-Slim [5] F ImageNet - 5.7 74.7
DDRNet23 [5] F ImageNet - 20.1 76.3
RTFormer-Slim [16] F ImageNet ViT 4.8 81.5
RTFormer [16] F ImageNet ViT 16.8 82.5
Lite [ours] 1/2 - MobileNetV2 0.56 66.4
Medium [ours] 1/2 - MobileNetV2 2.70 71.6
Large [ours] 1/2 - MobileNetV2 10.52 73.9

Table 7: Comparison to state-of-the-arts that are trained and tested on using full resolution.
1/2 + F: trained on half resolution followed by fine-tuning on full resolution.
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4.2 Bayesian Inference
4.2.1 Network Performance and Calibration

Dropout Sd Acc(g) Acc(g) [b] Acc(c) Acc(c) [b] mIOU mIOU [b]

- - 92.08 - 75.42 - 66.90 -
0.1 - 92.09 92.14 75.22 74.81 66.61 66.59
0.3 - 91.90 91.87 73.68 71.74 65.21 64.34
0.5 - 91.39 91.40 70.55 69.63 62.31 62.07

- 0.1 92.20 92.22 75.15 74.92 67.01 66.97
- 0.3 92.05 92.08 75.91 75.48 67.06 66.97
- 0.5 91.80 91.83 74.82 74.37 66.09 66.00

0.1 0.1 92.08 92.10 75.05 74.40 66.70 66.50
0.3 0.3 91.78 91.73 71.97 70.91 63.92 63.30
0.5 0.5 91.28 91.28 68.38 67.13 60.62 60.14

Table 8: Accuracy and IOU with Bayesian Approximation, [b] indicates values ran with
Bayesian approximation with T = 10, without [b] indicates deterministic inference.

(a) Performance of dropout variants with varying T

(b) Performance of sd variants with varying T
Figure 10: Performance of networks of Bayesian variants, dashed lines indicate performance
of deterministic test-time inference, error bars show the variance of the values from 5 re-
peated trials. Note that global accuracy can usually be improved with Bayesian inference,
but average accuracy and mIOU tend to be deteriorate.
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Figure 11: Qualitative results of Bayesian variants on a test set image, note that variants with
higher probabilities (i.e. with probability 0.5) produce qualitatively more uncertainties.
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Dropout Sd mIOU ↑ ECE ↓ ECE [b] MCE ↓ MCE [b] PAvPU ↑
- - 66.90 2.71 - 1.61 - -

0.1 - 66.61 2.46 1.60 1.40 0.84 90.14
0.3 - 65.21 2.19 0.70 1.25 0.16 88.35
0.5 - 62.31 2.20 0.17 1.09 0.05 88.63

- 0.1 67.01 2.36 1.87 1.26 0.92 90.33
- 0.3 67.06 2.14 1.23 1.11 0.58 89.79
- 0.5 66.09 2.20 1.17 1.16 0.55 89.61

0.1 0.1 66.70 2.30 1.07 1.31 0.48 89.83
0.3 0.3 63.92 1.92 0.27 1.00 0.12 88.53
0.5 0.5 60.62 1.72 1.10 0.76 0.41 87.66

Table 9: MCE, ECE, and PAvPU with Bayesian Approximation, [b] indicates values ran
with Bayesian approximation with T = 10, without [b] indicates deterministic inference.

Figure 12: Effect of T on calibration errors for the different Bayesian methods with proba-
bility 0.5, error bars show variance obtained over 5 repeated trials over the test set.
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Figure 13: The reliability and frequency plot of stochastic vs. deterministic networks, net-
works with dropout show much more calibrated uncertainties whilst deterministic networks
are overconfident.

Inference Time(ms) ↓ FPS ↑ Memory ↓ mIOU ↑ ECE ↓ MCE ↓
dropout-0.1

Det. 11.4±0.0 88 189 Mb 66.61 2.46 1.40
T=2 21.9±0.0 46 358 Mb 65.94 1.97 1.11
T=4 36.1±4.9 28 711 Mb 66.36 1.72 0.94
T=8 61.5±11.6 16 1.39 Gb 66.50 1.66 0.87
T=16 107.4±1.9 9 2.77 Gb 66.58 1.55 0.80
T=32 215.5±5.4 5 5.54 Gb 66.65 1.52 0.80

sd-0.3

Det. 11.4±0.0 88 190 Mb 67.06 2.14 1.11
T=2 19.8±2.3 51 361 Mb 66.45 1.68 0.89
T=4 33.7±4.1 30 712 Mb 66.90 1.37 0.69
T=8 52.4±0.7 19 1.39 Gb 66.94 1.30 0.65
T=16 108.7±0.2 9 2.77 Gb 67.01 1.25 0.60
T=32 220.4±0.5 5 5.54 Gb 67.03 1.22 0.58

Table 10: Computational requirements for different Bayesian inference, using the dropout
and sd variant that obtained highest mIOU performance. Stochastic depth obtains overall
lower ECE and higher mIOU compared to dropout.
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4.2.2 Out of distribution data

Figure 14: The predictive outputs of a Bayesian network with dropout, we observe qualita-
tively very high epistemic uncertainty values on images that are different to our training set,
e.g. the first three row, and much lower uncertainty on the last image, which is similar to the
CamVid dataset.

Figure 15: The distribution of softmax probabilities of the deterministic and Bayesian net-
work on the CamVid dataset and the RUGD dataset. The Bayesian network produces much
lower confidence on the out-of-distribution dataset compared to the deterministic network.
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5 Discussion

5.1 Efficient Designs Discussions
Skip connections are a low-cost way to improve the detection of small classes. Our
experiments with modifications to skip connections showed that concatenating features from
the encoder to the decoder significantly helps the detection of small obstacles. In addition, we
highlight that this operation is relatively low-cost, adding only a small fraction of parameter
and inference time. Note that this may not hold in other encoder-decoder networks that do
not use inverted residual blocks. The expansion steps in inverted residual blocks are the
dominant computational cost of our network and hence transferring high-resolution features
comes at a relatively low cost.

Scaling coefficients can be improved with a small grid search. Our network scaling ex-
periments use width and multipliers in [0.5,1.0,1.5] for convenience of quickly exploring the
parameter space. A much better but perhaps more costly method would be to adopt a small
grid search similar to [15], whereby we find the best scaling coefficient for the network depth
and width based on a few constraints. For example, we can perform a random grid search
of width and depth multipliers to determine the most efficient way to improve performance.
The scaling coefficients obtained this way are more likely going to better optimize the scaling
efficiency of the network.

Wider features are desired in segmentation networks. This finding is validated by our
experiments involving shallow decoders and network scaling. We conjecture that network
width is extremely crucial in encoder-decoder networks, allowing networks to improve their
detection for small classes. We provide conjecture on why this is the case, although more
rigorous experiments are required to validate this hypothesis:

The nature of network width for encoder-decoder architectures is different to classifica-
tion networks. Consider a standard classification network such as MobileNet, it outputs last
features with shape (7×7×1024) to predict 1000 classes on ImageNet. This suggests that
the information contained in the last feature map sits at a much lower (about 50-fold) dimen-
sional manifold than the feature dimension itself. Now consider building an encoder-decoder
architecture with MobileNet, the final feature map of the network from the decoder will have
32 channels with half the original resolution. Compared with the final prediction at full res-
olution (4× more pixels) with 11 channels, we actually have less information contained in
the feature map than is required from the final prediction.

Therefore, the loss in spatial information from lossy downsampling and upsampling steps
can be reduced by increasing the network width, which increases the sparsity at which in-
formation exists in the final feature output. Modern CNNs are typically designed and fine-
tuned to the ImageNet dataset with 1000 classes, so its intermediate feature outputs are not
designed for semantic segmentation. This points to a future direction of neural architecture
search (NAS) for finding scalable and efficient encoder-decoder architectures, which we will
further discuss in the conclusion.

5.2 Bayesian Inference Discussion
Trade-off between network performance and calibration error An obvious artifact of
testing with Bayesian inference is that they produce lower mIOU and per-class accuracy.
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This presents a trade-off between improving the calibration error and achieving high per-
formance. Our experiment show that using dropout probabilities as low as 0.1 combined
with T as low as 2 to 5, is enough to reduce the calibration error by a large margin. Whilst
using several stochastic forward passes for Bayesian approximation achieves significantly
improved calibration errors, it also reduces the performance measured in mIOU compare to
deterministic test-time inference. Furthermore, this gap is usually non-reducible even at very
high T , as shown in Figure 10. In other words, Bayesian inference using test-time stochastic
regularization trades off performance for improved calibration.

Trade-off between computation cost and calibration error Our results in Table 9 show
that the best calibration error is obtained when Bayesian inference is used with T stochastic
forward passes. However, a clear downside of this approach is that the computational costs
grows with T . Table 10 show the computational trade-off between T , mIOU, and calibration
errors. The first observation we make is that inference time does not grow linearly with
T , but memory requirement roughly grows linearly with T . This is intuitive since GPU
can compute inference in parallel to save compute time, but still has to produce the entire
intermediate tensors. We see that with our GPU environment, we lose real-time inference at
around T = 4, where the framerate drops below 30.

Dropout versus stochastic depth Our results show that stochastic depth is a valid way
of obtaining more calibrated uncertainties. We further show that Bayesian variants with
stochastic depth with appropriate probabilities have the desired property of achieving higher
mIOU whilst reducing ECE. We demonstrate the trade-off with dropout-0.1 and sd-0.3 in
Table 10, which are the best network in terms of mIOU for the dropout and sd variants.
We see that networks trained with stochastic depth obtain higher accuracy and lower cali-
bration errors compared to dropout methods. This is true for both deterministic and non-
deterministic test inferences. Therefore in practical cases, stochastic depth is a good alter-
native over dropout methods to achieve lower calibration errors without losing performance.
On the other hand, if one is only interested in achieving the best calibration error, dropout
methods with high probability (e.g. 0.5) with test-time Bayesian inference is the best choice.

PAvPU is a biased metric for measuring uncertainty Our results in Table 8 and Ta-
ble 9 show that PAvPU is proportional to the global accuracy of the data. We see similar
observations with papers that use this metric or its variations [9, 10, 11], where networks
that perform better tend to achieve higher area under the curve. This phenomenon is due
to the fact that the curve is not normalized to its performance, in the limit with maximum
uncertainty threshold 1, the formula 9 equates to exactly the global accuracy.

We argue that PAvPU is not a good metric for measuring the quality of uncertainties
due to the following reasons. 1) The quality of uncertainty should be mutually exclusive
with respect to the quality of performance, in other words, the network should be allowed to
predict poorly, and "knows" that it’s performing poorly. 2) The PAvPU value is computed
with based on a sliding window of uncertainty threshold that’s derived from normalized
entropy values across a validation set, which makes the metric dependent on the dataset (i.e.
if it’s in-domain, the entropy values will be lower, and vice versa if the validation is out-of-
distribution from the training set, the entropy values will be higher), as well as noisy artifacts
from the stochastic nature of Bayesian approximation. We argue that a good metric should
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not be dependent on the dataset itself and that such quality are defects that make the metric
unsuitable for evaluating uncertainty.

References
[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convo-

lutional encoder-decoder architecture for image segmentation. IEEE transactions on
pattern analysis and machine intelligence, 39(12):2481–2495, 2017.

[2] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes in
video: A high-definition ground truth database. Pattern Recognition Letters, 30(2):
88–97, 2009.

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and ma-
chine intelligence, 40(4):834–848, 2017.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[5] Yuanduo Hong, Huihui Pan, Weichao Sun, and Yisong Jia. Deep dual-resolution net-
works for real-time and accurate semantic segmentation of road scenes. arXiv preprint
arXiv:2101.06085, 2021.

[6] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 7132–7141,
2018.

[7] Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, and Yoshua Bengio.
The one hundred layers tiramisu: Fully convolutional densenets for semantic segmenta-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 11–19, 2017.

[8] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015.

[9] Patrick McClure, Nao Rho, John A Lee, Jakub R Kaczmarzyk, Charles Y Zheng, Satra-
jit S Ghosh, Dylan M Nielson, Adam G Thomas, Peter Bandettini, and Francisco
Pereira. Knowing what you know in brain segmentation using bayesian deep neural
networks. Frontiers in neuroinformatics, 13:67, 2019.

[10] Aryan Mobiny, Pengyu Yuan, Supratik K Moulik, Naveen Garg, Carol C Wu, and
Hien Van Nguyen. Dropconnect is effective in modeling uncertainty of bayesian deep
networks. Scientific reports, 11(1):5458, 2021.

[11] Jishnu Mukhoti and Yarin Gal. Evaluating bayesian deep learning methods for semantic
segmentation. arXiv preprint arXiv:1811.12709, 2018.



YAO, HADJIVELICHKOV, DELFAKI, LIU, PAIGE, KANOULAS: SDS BBNS 21

[12] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well
calibrated probabilities using bayesian binning. In Proceedings of the AAAI conference
on artificial intelligence, volume 29, 2015.

[13] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution net-
work for semantic segmentation. In Proceedings of the IEEE international conference
on computer vision, pages 1520–1528, 2015.

[14] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. Enet: A
deep neural network architecture for real-time semantic segmentation. arXiv preprint
arXiv:1606.02147, 2016.

[15] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International conference on machine learning, pages 6105–6114.
PMLR, 2019.

[16] Jian Wang, Chenhui Gou, Qiman Wu, Haocheng Feng, Junyu Han, Errui Ding, and
Jingdong Wang. Rtformer: Efficient design for real-time semantic segmentation with
transformer. Advances in Neural Information Processing Systems, 35:7423–7436,
2022.

[17] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, and Nong Sang.
Bisenet: Bilateral segmentation network for real-time semantic segmentation. In Pro-
ceedings of the European conference on computer vision (ECCV), pages 325–341,
2018.


