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1 Implementation Details

Object discovery. For object segmentation with HDBSCAN [2] we use min_cluster_size =
15, min_samples = 15 and cluster_selection_epsilon = 0.15. To avoid uncertain objects, i.e.
very small objects that lead to ambiguous 2D depth map projections and flying objects, which
are mostly likely no objects of interest caused by occlusion, we apply filters after clustering:
We remove segments with less than 10 points, exceeding the distance of 1m to the ground
plane and segments with a height below 0.5m resulting in segments S;.

A track is considered static when a percentile & = 20% of PP-Scores per segment S is
above the threshold & = 0.7 for all its segments, all the boxes of a track overlap with the
largest box of the track, or the track has no consistent motion behavior (no smooth linear
motion). We limit the greedy assignment between track predictions and detections by a 1m
radius w.r.t. Euclidean distance. If no assignment can be found, we relax the radius to Sm
and assign a matched detection if the number of points between the track prediction and
detection cluster segment differs less than 30%. This relaxed assignment recovers very fast-
moving objects, such as vehicles on the highway, and mitigates false assignments between
temporally occluded or over-segmented objects.

Object classification. We use CLIP' [5] with the ViT-B/16 visual encoder [3] for the clas-
sification of the projected depth maps. Therefore, we generate K = 4 different views, con-
taining the basic view without rotation, rotations about the z-axis (yaw) of £18° and about
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the y-axis (pitch) of 6°. Compared to synthetic CAD data [9], objects in outdoor LiDAR
scans suffer from self-occlusion (recall Fig. 1 in the main manuscript) and thus are only
sufficiently visible from small variations of the original viewpoint. Therefore, we only apply
small rotations. A tilt in the negative y-direction is also not useful because the ground plane
prevents a valid shape at the bottom (in contrast to, for example, viewing the roof of a car
from a slightly elevated viewpoint). In Table 1, we provide the refined object categories we
use for CLIP classification. The class predictions of the refined categories are later mapped
back to the original object classes.

Class Refined categories

Vehicle car, truck, bus, van, minivan, pickup truck, school bus, fire truck, ambulance
Pedestrian pedestrian, human body, human

Cyclist cyclist, rider, bicycle, bike

Background traffic light, traffic sign, fence, pole, clutter, tree, house, wall

Table 1: Category text refinement. We use the listed refined categories for predicting class
labels with CLIP and map the result back to the original class space of the dataset.

Temporally-coherent class label refinement. After classification, we assign the class la-
bel with the highest score to all objects in the track as long as the maximum class label score
exceeds the threshold of 0.5 for vehicles and 0.3 for pedestrians, cyclists and background.
Additionally, this class label must match at least 60% of the tracks’ predicted classes. This
propagation of labels throughout track is done for static and moving objects. We keep the
CLIP label prediction for static objects not fulfilling the proposed conditions.

However, assuming that all objects in motion are of interest and the class label space
in the automotive domain contains vehicles, pedestrians and cyclists, we added a default
classification scheme based on object size priors for all remaining objects. Therefore, we
define for moving objects:

pedestrian, if 0.2<b, <1.0 and 0.2 <b; < 1.0 and 0.8 < b;, < 2.2,
cyclist, if 0.2<b,<1.0 and 1.0<b; <2.5 and 1.4 < by, < 2.0,
vehicle, if 0.5<b,<3.0 and 0.5<5b; <8.0 and 1.0 < b, < 3.0,
background, otherwise.

The class label for object i is denoted y;, and the bounding box dimensions width, length,
and height are denoted b,,, b;, and by, respectively.

Temporally-coherent bounding box refinement. After propagating median box sizes, we
filter those static tracks whose corrected box dimensions deviate significantly from the di-
mensions of the object categories involved. Therefore, we define the bounding box size
thresholds for width, length and height as 0.2 < b,, < 3.5,0.2 < b; < 20.0and 0.5 < by, < 4.0
respectively. Finally, to reduce annotation bias, we inflate bounding boxes similar to [6] for
each dimension by 0.3m.
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2 Additional Results

Spatio-temporal clustering. In order to fully exploit the inherent temporal information
contained in sequential LiDAR scans, we perform spatio-temporal clustering on multiple Li-
DAR scans, transformed into the same reference coordinate system. In Table 2, we show the
advantage of the proposed spatio-temporal clustering compared to simple frame-by-frame
spatial clustering with only spatial input features (X, y, z).

AP(L2) AP(L2) APH(L2) APH (L2)

Clustering BEV 3D BEV 3D
Spatial 35.1 30.6 25.0 212
Spatio-temporal 36.3 32.3 26.0 22.5

Table 2: Comparison of spatial and spatio-temporal clustering following the protocols
of [1, 4] on the WOD [7] (i.e. AP for BEV and 3D, difficulty level L2, IoU 0.4). We addi-
tionally report APH which includes the heading angle precision.

Size prior baseline comparison. Since no comparable approach performs unsupervised
class-aware object detection, we implement a baseline classifying objects based on simple
size priors. Therefore, we adopt the default classification scheme for moving objects of our
temporally-coherent class label refinement (recall Section 1) for all objects independent of
their motion state. Hence, we replace CLIP classification within our approach with simple
object size prior thresholds and keep all other parts as is. In Table 3, we show the baseline re-
sults compared to our vision-language-guided approach. We can show that the CLIP model’s
rich knowledge adds significant value to classifying objects in 3D LiDAR point clouds.

Classification Movable Vehicle Pedestrian  Cyclist
method BEV 3D BEV BEV BEV
Baseline (size prior) 12.7  10.9 14.1 6.4 2.0
VILGOD 36.3 323 49.0 16.8 7.6

Table 3: Size prior baseline comparison following the protocols of [1, 4] on the WOD [7]
(i.e. AP for BEV and 3D, difficulty level L2, IoU 0.4). We report class-aware detection
results for BEV. VILGOD significantly outperforms the baseline which classifies objects
solely on pre-defined object size thresholds.

Range evaluation. For the sake of completeness and to gain even more insight, we show
the full range evaluation for the Waymo Open Dataset (WOD) [7]. We provide a detailed
range analysis for the zero-shot detection of VILGOD and the pseudo-label trained Center-
point [8] (VILGOD-CP) in Table 4. Following [1, 7], we report AP at difficulty level L2 with
an intersection over union (IoU) threshold of 0.4 for BEV.

We observe that the detection with VILGOD and ViLGOD-CP works best in the near range
for all object classes. The simple self-supervision with pseudo-labels reinforces the learning
for these objects but also improves pedestrians and vehicles in the medium range by a large
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Overall [0m,30m)  [30m,50m)  [50m,+inf)

Method Class AP/APH AP/APH AP/APH  AP/APH
VILGOD Vehicle 2727170 562/345 20.0/13.0 6.0/ 4.0
VILGOD-CP ! 295/21.4 688/492 213/205 1.1/ 09
VILGOD Pedestrian 1237113 2007180 90/ 85 60/ 58
VILGOD-CP  ~ oMM 939/19.0 42.0/33.6 205/166 18/ 1.5
VILGOD Cuclist 47/ 47 80/ 79 25/ 25 19/ 19
ViLGOD-cp Y 46/ 44 109/105 02/ 02 00/ 00

Table 4: Range evaluation following the protocols of [1, 7] on the WOD [7] (i.e. AP for
BEV and 3D, difficulty level L2, IoU 0.4). We extend the range to 160x160 around the
ego-vehicle. Even in far ranges (+50m), ViLGOD detects some objects correctly.

Movable Vehicle Pedestrian  Cyclist
Text prompt template

BEV 3D BEV BEV BEV
a point representation of a <class> 36.3  32.3 49.0 16.8 7.6
a silhouette of a <class> 25.8 223 29.4 19.0 7.5
a depth map of <class> 29.5 260 39.0 16.5 7.5

Table 5: Text prompt template evaluation on WOD [7] (following the protocols of [,
4], i.e. AP for BEV and 3D, difficulty level L2, ToU 0.4). We show detection results with
different text input templates.

margin. Only cyclists, which are underrepresented in the dataset in the first place and addi-
tionally not well detected by VILGOD, degenerate in the middle to far distances. Additional
augmentations, such as a pseudo-ground truth database or a more complex training routine,
could alleviate this negative effect.

3 Impact of Text Prompts

Text prompt templates. To bridge the modality gap between 3D point clouds and 2D
images, we generate depth maps from 3D point segments with varying densities (depending
on the distance to the ego-vehicle). Although not specifically trained for depth images,
CLIP [5] can still classify many of these projections correctly. An important design decision
is the text prompt we provide CLIP to get the best feature representation matching the image
features. In Table 5, we show two additional template variants, i.e. a depth map of <class>
and a silhouette of <class>, describing the projected image. It can be observed that a point
representation of <class> leads to the best results. However, a silhouette of <class> seems
to be preferable for pedestrians but performs worse overall.
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