
Supplemental Material

InterroGate: Learning to Share, Specialize, and Prune
Representations for Multi-task Learning

A Dataset Description

We use the three popular MTL benchmarks, CelebA [4], NYUD-v2 [6], and PASCAL-Context
[2], to evaluate the performance of InterroGate. CelebA is a large-scale face attributes dataset,
consisting of more than 200k celebrity images, each labeled with 40 attribute annotations. We
consider the age, gender, and clothes attributes to form three output classification tasks for our
MTL setup and use binary cross-entropy to train the model. The NYUD-v2 dataset is designed
for semantic segmentation and depth estimation tasks. It comprises 795 train and 654 test
images taken from various indoor scenes in New York City, with pixel-wise annotation for
semantic segmentation and depth estimation. Following recent work [5, 10, 11], we also
incorporate the surface normal prediction task, obtaining annotations directly from the depth
ground truth. We use the mean intersection over union (mIoU) and root mean square error
(rmse) to evaluate the semantic segmentation and depth estimation tasks, respectively. We
use the mean error (mErr) in the predicted angles to evaluate the surface normals. Finally,
the PASCAL-Context dataset is an extension of the PASCAL VOC 2010 dataset [3] and
provides a comprehensive scene understanding benchmark by labeling images for semantic
segmentation, human parts segmentation, semantic edge detection, surface normal estimation,
and saliency detection. The dataset consists of 4,998 train images and 5,105 test images. The
semantic segmentation, saliency estimation, and human part segmentation tasks are evaluated
using mIoU. Similar to NYUD, mErr is used to evaluate the surface normal predictions.

B Implementation and Training Details

B.1 CelebA

On the CelebA dataset, we use ResNet-20 as our backbone with three task-specific linear
classifier heads, one for each attribute. We resize the input images to 32x32 and remove the
initial pooling in the stem of ResNet to accommodate the small image resolution. For training,
we use the Adam optimizer with a learning rate of 1e-3, weight decay of 1e-4, and a batch size
of 128. For learning rate decay, we use a step learning rate scheduler with step size 20 and a
multiplicative factor of 1/3. We use SGD with a learning rate of 0.1 for the gates’ parameters.

B.2 NYUD and PASCAL-Context

For both NYUD-v2 and PASCAL-Context with ResNet-18 and ResNet-50 backbones, we use
the Atrous Spatial Pyramid Pooling (ASPP) module introduced by [1] as task-specific heads.
For the HRNet-18 backbone, we follow the methodology of the original paper [9]: HRNet
combines the output representations at four different resolutions and fuses them using 1x1
convolutions to output dense prediction.
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We train all convolution-based encoders on the NYUD-v2 dataset for 100 epochs with
a batch size of 4 and on the PASCAL-Context dataset for 60 epochs with a batch size of 8.
We use the Adam optimizer, with a learning rate of 1e-4 and weight decay of 1e-4. We use
the same data augmentation strategies for both NYUD-v2 and PASCAL-Context datasets as
described in [7]. We use SGD with a learning rate of 0.1 to learn the gates’ parameters.

In terms of task objectives, we use the cross-entropy loss for semantic segmentation
and human parts, L1 loss for depth and normals, and binary-cross entropy loss for edge
and saliency detection tasks, similar to [7]. For learning rate decay, we adopt a polynomial
learning rate decay scheme with a power of 0.9.

DPT training on NYUD-v2. We follow the same training procedure for DPT, as described
by the authors, which employs the Adam optimizer, with a learning rate of 1e-5 for the encoder
and 1e-4 for the task heads, and a batch size of 8.

The ViT backbones were pre-trained on ImageNet-21k at resolution 224×224, and fine-
tuned on ImageNet 2012 at resolution 384×384. The feature dimension for DPT’s task heads
was reduced from 256 to 64. We conducted a sweep over a set of weight decay values and
chose 1e-6 as the optimal value for our DPT experiments.

The Choice of ωt . The hyper-parameter ωt denotes the scalarization weights. We use
the weights suggested in prior work but also report numbers of uniform scalarization. For
NYUD-v2, we use uniform scalarization as suggested in [5, 8], and for PASCAL-Context, we
similarly use the weights suggested in [5] and [8].

B.3 Setup
For initialization, we use pretrained ImageNet weights for the single-task and multi-task
baseline. For InterroGate, the shared branch is initialized with ImageNet weights while the
task-specific branches are with their corresponding single-task weights. Finally, we discover
that employing a separate optimizer for the gates improves the convergence of the model. All
experiments were conducted on a single NVIDIA V100 GPU and we use the same training
setup and hyperparameters across all MTL approaches included in our comparison.

C Generalization to Vision Transformers
As transformers are becoming widely used in the vision literature, and to show the generality
of our proposed MTL framework, we also apply InterroGate to vision transformers: We again
denote ϕℓ

t ∈ RNℓ×Cℓ
and ψℓ ∈ RNℓ×Cℓ

as the t-th task-specific and shared representations in
layer ℓ, where Nℓ and Cℓ are the number of tokens and embedding dimensions, respectively.
We first apply our feature selection to the key, query and value linear projections in each
self-attention block:
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where αℓ
q,t , αℓ

k,t , αℓ
v,t are the learnable gating parameters mixing the task-specific and shared

projections for queries, keys and values, respectively. f l
q,t , f l

k,t , f l
v,t are the linear projections

for query, key and value for the task t, while f l
q, f l

k , f l
v are the corresponding shared projections.
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Once the task-specific representations are formed, the shared embeddings for the next block
are computed by a learned mixing of the task-specific feature followed by a linear projection,
as described in Equation 3. Similarly, we apply this gating mechanism to the final linear
projection of the multi-head self-attention, as well as the linear layers in the feed-forward
networks in-between each self-attention block.

D Forward-pass Pseudo-code
Algorithm 1 illustrates the steps in the forward pass of the algorithm.

Algorithm 1: Pseudo-code for unified representation encoder
Given:

• x ∈ R3×W×H // Input image
• T,L ∈ R // Number of tasks and encoder layers
• Ψ, Φt // Shared and t-th task-specific layer parameters
• β , αt // Shared and t-th task-specific gating parameters

Return: [ϕL
1 , ...,ϕ

L
T ] // Task-specific encoder representations

ψ0,ϕ0
1 , ...,ϕ

0
T ← x // Set initial shared and task-specific features

for ℓ= 1 to L do
for t = 1 to T do

ϕ ′ℓt ← Gℓ
t (α

ℓ
t )⊙ϕℓ

t +(1−Gℓ
t (α

ℓ
t ))⊙ψℓ (Equation 2)

// Choose shared and task-specific features
ϕ
ℓ+1
t ← F(ϕ ′ℓt ;Φℓ

t ) // Compute task-specific features
end for
ψ ′ℓ = ∑

T
t=1 softmax

t=1...T
(β ℓ

t )⊙ϕ ′ℓt (Equation 3)

// Combine task-specific features to form shared ones
ψℓ+1← F(ψ ′ℓ;Ψℓ) // Compute shared features

end for

E Training Time Comparisons
While our method is mainly aiming at improving the inference cost efficiency, we also measure
and compare training times between our method and the baselines, on the PASCAL-Context
[2]. The results are shown on Table 8. The forward and backward passes are averaged over
1000 iterations, after 10 warmup iterations, on a single NvidiaV100 GPU, with a batch size of
4.

F Additional Experiments

F.1 Full Results on CelebA and NYUD-v2
In Table 9, we report results on the CelebA dataset for different model capacities: Here,
InterroGate is compared to the STL and standard MTL methods with different model width:
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Table 8: Training time comparison of various MTL methods

Method Forward (ms) Backward (ms) Training time (h) ∆MTL

Standard MTL 60 299 7.5 -4.14
MTAN 73 330 8.5 -1.78
Cross-stitch 132 454 12.3 +0.14
MGDA-UB 60 568 13.2 -1.94
CAGrad 60 473 11.1 -2.03
PCGrad 60 495 11.6 -2.58

InterroGate 76 324 8.4 -1.35
InterroGate 102 376 10.1 +0.12
InterroGate 119 426 11.5 +0.42

Table 9: Performance comparison of various MTL models on the CelebA dataset with different model
capacities. Different InterroGate models are obtained by varying λs

.
Model Gender ↑ Age ↑ Clothes ↑ Overall ↑ Flops (M) MR↓

STL 97.50 86.02 93.00 92.17 174 3.3
MTL 97.28 86.70 92.35 92.11 58 4.7
InterroGate 97.60 87.44 92.40 92.48 59 2.7
InterroGate 97.77 87.39 92.56 92.57 11 2.3
InterroGate 97.95 87.24 92.85 92.68 162 2.0

STL 96.99 85.60 92.72 91.77 44.4 3.7
MTL 97.02 86.41 92.11 91.85 14.8 4.0
InterroGate 97.33 86.75 92.05 92.05 15.5 3.7
InterroGate 97.33 87.05 92.12 92.17 17.4 2.3
InterroGate 97.46 86.97 92.47 92.23 24.5 1.7

STL 96.64 85.22 92.19 91.35 11.6 3.3
MTL 96.46 85.46 91.59 91.17 3.9 4.3
InterroGate 96.81 86.05 91.48 91.45 4.7 3.7
InterroGate 96.92 86.10 91.64 91.56 5.5 2.0
InterroGate 96.81 86.61 91.74 91.72 6.4 2.0
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at original, half and quarter of the original model width. In Tables 10 and 11, we report the
complete results on NYUD-v2 dataset using HRNet-18 and ResNet-50 backbones, including
the parameter count and standard deviation of the ∆MTL scores.

Table 10: Performance comparison on NYUD-v2 using HRNet-18 backbone. Different InterroGate
models are obtained by varying λs.

Model Semseg ↑ Depth ↓ Normals ↓ ∆MTL (%) ↑ Flops (G) Param (M) MR↓

STL 41.70 0.582 18.89 0 ± 0.12 65.1 28.9 8.0
MTL (Uni.) 41.83 0.582 22.84 -6.86 ± 0.76 24.5 9.8 11.0
DWA 41.86 0.580 22.61 -6.29 ± 0.95 24.5 9.8 8.7
Uncertainty 41.49 0.575 22.27 -5.73 ± 0.35 24.5 9.8 8.3
Auto-λ 42.71 0.577 22.87 -5.92 ± 0.47 24.5 9.8 8.0
RLW 42.10 0.593 23.29 -8.09 ± 1.11 24.5 9.8 11.7

PCGrad 41.75 0.581 22.73 -6.70 ± 0.99 24.5 9.8 10.3
CAGrad 42.31 0.580 22.79 -6.28 ± 0.90 24.5 9.8 8.7
MGDA-UB 41.23 0.625 21.07 -6.68 ± 0.67 24.5 9.8 11.3

InterroGate 43.58 0.559 19.32 +2.06 ± 0.13 43.2 18.8 1.3
InterroGate 42.95 0.562 19.73 +0.68 ± 0.09 38.3 16.5 2.3
InterroGate 42.36 0.564 20.04 -0.55 ± 0.17 36.0 15.4 4.0
InterroGate 42.73 0.575 21.01 -2.55 ± 0.11 33.1 13.7 4.0
InterroGate 42.35 0.575 21.70 -4.07 ± 0.38 29.2 11.9 5.7
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Table 11: Performance comparison on NYUD-v2 using ResNet-50 backbone. Different InterroGate
models are obtained by varying λs.

Model Semseg ↑ Depth ↓ Normals ↓ ∆MTL (%) ↑ Flops (G) Param (M) MR↓

STL 43.20 0.599 19.42 0 ± 0.11 1149 118.9 9.0
MTL (Uni.) 43.39 0.586 21.70 -3.04 ± 0.79 683 71.9 9.7
DWA 43.60 0.593 21.64 -3.16 ± 0.39 683 71.9 9.7
Uncertainty 43.47 0.594 21.42 -2.95 ± 0.40 683 71.9 10.0
Auto-λ 43.57 0.588 21.75 -3.10 ± 0.39 683 71.9 10.0
RLW 43.49 0.587 21.54 -2.74 ± 0.09 683 71.9 8.3

PCGrad 43.74 0.588 21.55 -2.66 ± 0.15 683 71.9 7.3
CAGrad 43.57 0.583 21.55 -2.49 ± 0.11 683 71.9 7.0
MGDA-UB 42.56 0.586 21.76 -3.83 ± 0.17 683 71.9 11.3

MTAN 44.92 0.585 21.14 -0.84 ± 0.32 683 92.4 4.0
Cross-stitch 44.19 0.577 19.62 +1.66 ± 0.09 1151 119.0 2.7

InterroGate 44.38 0.576 19.50 +2.04 ± 0.07 916 95.4 1.7
InterroGate 43.63 0.577 19.66 +1.16 ± 0.10 892 92.4 3.7
InterroGate 43.05 0.589 19.95 -0.50 ± 0.05 794 83.3 9.7

F.2 Ablation: Sharing/Specialization Patterns

As discussed in the manuscript, in this ablation, we investigate the gating patterns that the
model converges to. Specifically, we study how much each task contributes to and benefits
from the shared representations. To that aim, we show (i) the percentage of task-specific
representations selected by each task (captured by the gates Gt(αt)), as well as (ii) how
much the features specific to each task contribute to the formation of the shared feature bank
(captured by the learned combination weights β ); Figure 4 illustrates the distribution of the
gating patterns across all layers of the ResNet-18 backbone for the PASCAL-Context dataset
for 3 models with (a) Hinge loss, (b) medium-level pruning using uniform L1 loss and (c)
high-level pruning with uniform L1 loss.

In all settings, the semantic segmentation task makes the largest contribution to the shared
branch, followed by the normals prediction tasks. It is worth noting that the amount of feature
contribution to the shared branch can also be largely influenced by other tasks’ loss functions.
In this situation, we observe that if the normal task lacks enough task-specific features (as
seen in the middle and right models), its performance deteriorates significantly. In contrast,
when it acquires sufficient task-specific features, it maintains a high accuracy (a). Intriguingly,
the features of the normal task become less interesting to other tasks in this scenario possibly
due to increased specialization.

F.3 Ablation: Sparsity Targets

By tuning the sparsity targets τ in Equation 4, we can achieve specific compute budgets of the
final network at inference. However, there are multiple choices of {τt}T

t=1 that can achieve
the same budget. In this section, we further investigate the impact of which task we allocate
more or less of the compute budget on the final accuracy/efficiency trade-off.

We perform an experiment sweep for different combination of sparsity targets, where
each τt is chosen from {0,0.25,0.75,1.0}. Each experiment is run for two different random
seeds and two different sparsity loss weights λs. Due to the large number of experiments, we
perform the ablation experiments for shorter training runs (75% of the training epochs for
each setup)

Our take-away conclusions are that (i) we clearly observe that some tasks require more
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(a) With Hinge sparsity loss
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(b) With uniform L1 loss (medium pruning)
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(c) With uniform L1 loss (high pruning)

Figure 4: Sharing and specialization patterns on pascal context dataset with ResNet-18 backbone for
InterroGate with (a) hinge loss, (b) L1 loss with medium pruning and (c) L1 loss with high pruning.
Each sub-figure shows the task-specific representation selection ratio (top part) versus proportions of
maximum contributions to the shared branch (bottom part).
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task-specific parameters (hence a higher sparsity target) and (ii) this dichotomy often correlates
with the per-task performance gap observed between the STL and MTL baselines, which can
thus be used as a guide to set the hyperparameter values for τ .

In the results of NYUD-v2 in Figure 5, we observe a clear hierarchy in terms of task
importance: When looking at the points on the Pareto curve, they prefer high values of τnormals,
followed by τsegmentation: In other words, these two tasks, and in particular normals prediction,
requires more task-specific parameters than the depth prediction task to obtain the best MTL
performance versus compute cost trade-offs.

(a) Color by τsegmentation (b) Color by τdepth

(c) Color by τnormals
Figure 5: Sweeping over different {τt} on the NYUD-v2 experiments with HRNet-18 backbone. We
plot the MTL performance ∆MT L against the total number of FLOPs, then color each scatter point by
the value of τt when the task t is (a) segmentation, (b) depth and (c) normals.

Then, we conduct a similar analysis for the five tasks of PASCAL-Context in Figure 6.
Here we see a clear split in tasks: The graph for the edges prediction and saliency task
are very similar to one another and tend to prefer high τ values, i.e. more task-specific
parameters, at higher compute budget. But when focusing on a lower compute budget, it is
more beneficial to the overall objective for these tasks to use the shared branch. Similarly, the
tasks of segmentation and human parts exhibit similar behavior under variations of τ and are
more robust to using shared representations (lower values of τ). Finally, the task of normals
prediction (b) differ from the other four, and in particular exhibit a variance of behavior across
different compute budget. In particular, when targetting the intermediate range (350B-450B
FLOPs), setting higher τnormals helps the overall objective.
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(a) Color by τedges (b) Color by τnormals

(c) Color by τhuman parts (d) Color by τsaliency

(e) Color by τsegmentation

Figure 6: Sweeping over different {τt} on the PASCAL-Context. We plot the MTL performance ∆MT L
against the total number of FLOPs, then color each scatter point by the value of τt when the task t is (a)
edges, (b) normals (c) human parts, (d) saliency and (e) segmentation.
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