
Ehteshami Bejnordi et al.: SHARE, SPECIALIZE, & PRUNE REPRESENTATIONS FOR MTL 1

InterroGate: Learning to Share, Specialize,
and Prune Representations for
Multi-task Learning

Babak Ehteshami Bejnordi1

behtesha@qti.qualcomm.com

Gaurav Kumar2

gakum@qti.qualcomm.com

Amelie Royer1 †

aroyer@qti.qualcomm.com

Christos Louizos1

clouizos@qti.qualcomm.com

Tijmen Blankevoort1 †

tijmen@qti.qualcomm.com

Mohsen Ghafoorian3

mghafoor@qti.qualcomm.com

1 Qualcomm AI Research*

Science Park 301,
Amsterdam, Netherlands

2 Qualcomm AI Software
KRC Tower,
Hyderabad, India

3 Qualcomm XR Labs
Science Park 301,
Amsterdam, Netherlands

Abstract

Jointly learning multiple tasks with a unified model can improve accuracy and data
efficiency, but faces the challenge of task interference, where optimizing one task objective
may inadvertently compromise the performance of another. A solution to mitigate this is-
sue is to allocate task-specific parameters, free from interference, on top of shared features.
However, manually designing such architectures is cumbersome, as practitioners need to
balance between the overall performance across all tasks and the higher computational
cost induced by the newly added parameters. In this work, we propose InterroGate, a
novel MTL architecture designed to mitigate task interference while enhancing computa-
tional efficiency during inference. InterroGate features a learnable gating mechanism to
automatically balance the shared and task-specific representations while preserving the
performance of all tasks. The patterns of parameter sharing and specialization dynamically
learned during training, become fixed at inference, resulting in a static, optimized MTL
architecture. Through extensive empirical evaluations, we demonstrate SoTA results on
three MTL benchmarks.

1 Introduction
Multi-task learning (MTL) involves learning multiple tasks concurrently with a unified
architecture. By leveraging the shared information among related tasks, MTL has the potential
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to improve accuracy and data efficiency. In addition, learning a joint representation reduces
the computational and memory costs of the model at inference as visual features relevant to
all tasks are extracted only once. This is crucial for many real-life applications where a single
device is expected to solve multiple tasks simultaneously under strict compute constraints
(e.g. mobile devices, extended reality, self-driving cars, etc.). Despite these potential benefits,
in practice, MTL is often met with a key challenge known as negative transfer or task
interference [44], which refers to the phenomenon where the learning of one task negatively
impacts the learning of another task during joint training. While characterizing and solving
task interference is an open issue [30, 39], there exist two major lines of work to mitigate
this problem: (i) Multi-task Optimization (MTO) techniques aim to balance the training
process of each task, while (ii) architectural designs carefully allocate shared and task-specific
parameters to reduce interference.

Specifically, MTO approaches balance the losses/gradients of each task to mitigate the
extent of gradient conflicts while optimizing the shared features. However, the results may
still be compromised when the tasks rely on inherently different visual cues, making sharing
parameters difficult. An alternative and orthogonal research direction is to allocate additional
task-specific parameters, on top of shared generic features, to bypass task interference.
In particular, several state-of-the-art methods have proposed task-dependent selection and
adaptation of shared features [13, 28, 35, 38]. However, the dynamic allocation of task-
specific features is usually performed one task at a time, and solving all tasks still requires
multiple forward passes. Alternatively, Mixture of Experts (MoE) have also been employed
to reduce the computational cost of MTL by dynamically routing inputs to a subset of experts
[9, 10, 14, 23]. However, the input-dependent routing of MoE is typically hard to efficiently
deploy at inference, particularly with batched execution [31, 41].

In contrast to previous dynamic architectures, we learn to balance shared and task-specific
features jointly for all tasks, which allows us to predict all task outputs in a single forward
pass. In addition, we propose to regulate the expected inference cost through a budget-aware
regularization during training. By doing so, we aim to depart from a common trend in MTL
that heavily focuses on accuracy while neglecting computational efficiency [26, 36].

In this paper, we introduce InterroGate, a novel MTL architecture to mitigate task in-
terference while optimizing computational efficiency during inference. Our method learns
the per-layer optimal balance between sharing and specializing representations for a desired
computational budget. In particular, we leverage a shared network branch which is used as a
general communication channel through which the task-specific branches interact with each
other. This communication is enabled through a novel gating mechanism which learns for
each task and layer to select parameters from either the shared branch or their task-specific
branch. To enhance the learning of the gating behaviour, we harness single task baseline
weights to initialize task-specific branches.

InterroGate primarily aims to optimize efficiency in the inference phase, crucial in real-
world applications. While the gate dynamically learns to select between a large pool of
task-specific and shared parameters during training, at inference, the learned gating patterns
are static and thus can be used to prune the unselected parameters in the shared and task-
specific branches: As a result, InterroGate collapses to a simpler, highly efficient, static
architecture at inference time, suitable for batch processing. We control the trade-off between
inference computational cost and multi-task performance, by regularizing the gates using a
sparsity objective. In summary, our contributions are as follows:

• We propose a novel multi-task learning framework that learns the optimal parameter
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sharing and specialization patterns for all tasks, in tandem with the model parameters,
enhancing multi-task learning efficiency and effectiveness.

• We enable a training mechanism to control the trade-off between multi-task performance
and inference compute cost. Our proposed gating mechanism finds the optimal balance
between selecting shared and specialized parameters for each task, within a desired
computational budget, controlled with a sparsity objective. This, subsequently, enables
a simple process for creating a range of models on the efficiency/accuracy trade-off
spectrum, as opposed to most other MTL methods.

• Our proposed method is designed to optimize inference-time efficiency. Post-training,
the unselected parameters by the gates are pruned from the model, resulting in a simpler,
highly efficient neural network. In addition, our feature fusion strategy allows to predict
all tasks in a single forward pass, critical in many real-world applications.

• Through extensive empirical evaluations, we report SoTA results consistently on three
multi-tasking benchmarks with various convolutional and transformer-based backbones.
We then further investigate the proposed framework through ablation experiments.

2 Related Work

Multi-task Optimization (MTO) methods aim to automatically balance the different tasks
when optimizing shared parameters to maximize average performance. Loss-based meth-
ods [17, 21] are usually scalable and adaptively scale task losses based on certain statistics
(e.g. task output variance); Gradient-based methods [7, 8, 16, 19, 32] are more costly in
practice as they require storing a gradient per task, but usually yield higher performance.
Orthogonal to these optimization methods, several research directions investigate how to
design architectures that inherently mitigate task-interference, as described below.

Task Grouping approaches investigate which groups of tasks can safely share encoder
parameters without task interference. For instance [11, 34] identify “task affinities" as a guide
to isolate parameters of tasks most likely to interfere with one another. Similarly, [13] apply
neural architecture search techniques to design MTL architectures. However, exploring these
large architecture search spaces is a costly process.

Hard Parameter Sharing works such as Cross-Stitch [26], MTAN [20] or MuIT [3]
propose to learn the task parameter sharing design alongside the model features. However,
most of these works mainly focus on improving the accuracy of the model while neglecting
the computational cost: For instance, [12, 26] require a full network per task and improve
MTL performance through lightweight adapters across task branches. [3, 20] use task-specific
attention module on top of a shared feature encoder, but the cost of the task-specific decoder
heads often dominates the final architecture.

Conditional Compute approaches learn task-specific gating of model parameters: For
instance [35, 38] learn to select a subset of the most relevant layers when adapting the network
to a new downstream task. Piggyback [24] adapts a pretrained network to multiple tasks
by learning a set of per-task sparse masks. Similarly, [2] selects the most relevant feature
channels using learnable gates. Finally, Mixture of Experts (MoE) [9, 10, 14, 23] leverage
sparse gating to select a subset of experts for each input example.

Nevertheless, due to the dynamic nature of these works at inference, obtaining all task
predictions is computationally inefficient as it often requires one forward pass through the
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(a) MoE-based architecture for MTL (b) Our proposed Interrogate architectureTask Heads

Figure 1: (a) MoE-based architectures for multi-task learning [9, 10, 14, 23] rely on a router which
selects Top-k experts to execute based on the current task and representation. At inference, MoEs
can solve one task at a time, requiring T multiple forward passes to solve T tasks. (b) Our proposed
architecture, learns the per-layer optimal balance between sharing and specializing representations for
each task, and can solve all tasks in one forward pass.

Fixed fusion

(a) MTL architecture with 
InterroGate Layers (b) An InterroGate layer (c) InterroGate layer 

at inference

Task Heads

Encoder

Shared Branch

Figure 2: Overview of the proposed InterroGate framework: The original encoder layers are
substituted with InterroGate layers. The input to the layer is t+1 feature maps, one shared representation
and t task-specific representations. To decide between shared ψℓ or task-specific ϕℓ

t features, each task
relies on its own gating module Gℓ

t . The resulting channel-mixed feature-map ϕ ′ℓ
t is then fed to the next

task-specific layer. The input to the shared branch for the next layer is constructed by linearly combining
the task-specific features of all tasks using the learned parameter β ℓ

t . During inference, the parameters
(shared or task-specific) that are not chosen by the gates are removed from the model, resulting in a
plain neural network architecture.

model per task. Therefore, these methods are less suited for MTL settings requiring solving
all tasks concurrently. Additionally, dynamic expert selection in MoEs requires either storing
all expert weights on-chip, increasing memory demands, or frequent off-chip data transfers to
load necessary experts, leading to significant overheads, complicating their efficient inference
on resource-constrained devices [31, 41]. In contrast, InterroGate focuses on optimizing
efficiency and is capable of addressing all tasks simultaneously (See Figure 1), aligning
with many practical real-world needs. InterroGate employs learned gating patterns to prune
unselected parameters, resulting in a more streamlined and efficient static architecture during
inference, well-suited for batch processing. Finally, closest to our work is [4], which proposes
a probabilistic allocation of convolutional filters as task-specific or shared. However, this
design only allows for the shared features to send information to the task-specific branches.
In contrast, our gating mechanism allows for information to flow in any direction between the
shared and task-specific features, thereby enabling cross-task transfer in every layer.

3 InterroGate

Given T tasks, we aim to learn a flexible allocation of shared and task-specific parameters,
while optimizing the trade-off between accuracy and efficiency. Specifically, an InterroGate
model is characterized by task-specific parameters {Φt}T

t=1 and shared parameters Ψ. In
addition, discrete gates (with parameters α) are trained to only select a subset of the most
relevant features in both the shared and task-specific branches, thereby reducing the model’s
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computational cost. Under this formalism, the model and gate parameters are trained end-to-
end by minimizing the classical MTL objective:

L({Φt}T
t=1,Ψ,α) =

T

∑
t=1

ωt Lt(X ,Yt ;Φt ,Ψ,α), (1)

where X and Yt are the input data and corresponding labels for task t, Lt represents the
loss associated to task t, and ωt are hyperparameter coefficients which allow for balancing
the importance of each task in the overall objective. In the rest, we describe how we learn and
implement the feature-level routing mechanism characterized by α . We focus on convolutional
architectures in Section 3.1, and discuss transformer-based models in Appendix C.

3.1 Learning to Share, Specialize and Prune

Figure 2 presents an overview of the proposed InterroGate framework. Formally, let ψℓ ∈
RCℓ×W ℓ×Hℓ

and ϕℓ
t ∈ RCℓ×W ℓ×Hℓ

represent the shared and task-specific features at layer ℓ of
our multi-task network, respectively. In each layer ℓ, the gating module Gℓ

t of task t selects
relevant channels from either ψℓ and ϕℓ

t . The output of this hard routing operation yields
features ϕ ′ℓ

t :
ϕ
′ℓ
t = Gℓ

t (α
ℓ
t )⊙ϕ

ℓ
t +(1−Gℓ

t (α
ℓ
t ))⊙ψ

ℓ, (2)

where ⊙ is the Hadamard product and αℓ
t ∈ RCℓ

denotes the learnable gate parameters for
task t at layer ℓ and the gating module Gℓ

t outputs a vector in {0,1}Cℓ
, encoding the binary

selection for each channel. These intermediate features are then fed to the next task-specific
layer to form the features ϕ

ℓ+1
t = F(ϕ ′ℓ

t ;Φℓ
t ).

Similarly, we construct the shared features of the next layer ℓ+1 by mixing the previous
layer’s task-specific feature maps. In particular, we let the model learn its own soft combina-
tion weights and the resulting mixing operation for the shared features is defined as follows:

ψ
′ℓ =

T

∑
t=1

softmax
t=1...T

(β ℓ
t )⊙ϕ

′ℓ
t , (3)

where β ℓ ∈ RCℓ×T denotes the learnable parameters used to linearly combine the task-specific
features and form the shared feature map of the next layer. Similar to the task-specific
branch, these intermediate features are then fed to a convolutional block to form the features
ψℓ+1 = F(ψ ′ℓ;Ψℓ). Finally, note that there is no direct information flow between the shared
features of one layer to the next, i.e., ψℓ and ψℓ+1: Intuitively, the shared feature branch can
be interpreted as a general communication channel through which the task-specific branches
communicate with one another.

3.2 Implementing the Discrete Routing Mechanism
During training, the model features and gates are trained jointly and end-to-end. In (2),
the gating modules Gℓ

t each output a binary vector over channels in {0,1}C, where 0 means
choosing the shared feature at this channel index, while 1 means choosing the specialized
feature for the respective task t. In practice, we implement G as a sigmoid operation applied
to the learnable parameter α , followed by a thresholding operation at 0.5. Due to the non-
differentiable nature of this operation, we adopt the straight-through estimation (STE) during
training [1]: In the backward pass, STE approximates the gradient flowing through the
thresholding operation as the identity function.
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At inference, since the gate modules do not depend on the input data, our proposed
InterroGate method converts to a static neural network architecture, where feature maps are
pruned following the learned gating patterns: To be more specific, for a given layer ℓ and task
t, we first collect all channels for which the gate Gℓ

t (α
ℓ
t ) outputs 0; Then, we simply prune

the corresponding task-specific weights in Φ
ℓ−1
t . Similarly, we can prune away weights from

the shared branch Ψℓ−1 if the corresponding channels are never chosen by any of the tasks in
the mixing operation of (2). The pseudo-code for the complete unified encoder forward-pass
is detailed in Appendix D.

3.3 Sparsity Regularization

During training, we additionally control the proportion of shared versus task-specific features
usage by regularizing the gating module G. This allows us to reduce the computational cost,
as more of the task-specific weights can be pruned away at inference. We implement the
regularizer term as a hinge loss over the gating activations for task-specific features:

Lsparsity(α) =
1
T

T

∑
t=1

max

(
0,

1
L

L

∑
ℓ=1

σ(αℓ
t )− τt

)
, (4)

where σ is the sigmoid function and τt is a task-specific hinge target. The parameter τ allows
to control the proportion of active gates at each specific layer by setting a soft upper limit
for active task-specific parameters. A lower hinge target value encourages more sharing of
features while a higher value gives more flexibility to select task-specific features albeit at
the cost of higher computational cost. Our final training objective is a combination of the
multi-task objective and sparsity regularizer:

L= L({Φt}T
t=1,Ψ,α,β )+λsLsparsity(α), (5)

where λs is a hyperparameter balancing the two losses.

4 Experiments
4.1 Experimental Setup

Datasets and Backbones. We evaluate the performance of InterroGate on three popular
datasets: CelebA [22], NYUD-v2 [33], and PASCAL-Context [6]. Detailed description of
the datasets is presented in Appendix A. We consider the age, gender, and clothes attributes
in CelebA to form three output classification tasks for our MTL setup and use ResNet-20
[15] as the backbone. For NYUD-v2, following recent work [25, 40, 43], we also incorporate
the surface normal prediction task, obtaining annotations directly from the depth ground
truth. We use ResNet-50 with dilated convolutions and HRNet-18 following [37]. We also
present results using a dense prediction transformer (DPT) [29], with a ViT-base and -small
backbone. Finally, on PASCAL-Context, we use a ResNet-18 backbone. We further describe
implementation details and training hyper-parameters, in Appendix B.

SoTA Baselines and Metrics. To establish upper and lower bounds of MTL performance,
we always compare our models to the Single-Task baseline (STL), which is the performance
obtained when training an independent network for each task, as well as the uniform MTL
baseline where the model’s encoder (backbone) is shared by all tasks.
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In addition, we compare InterroGate to encoder-based methods including Cross-stitch [26]
and MTAN [20], as well as MTO approaches such as uncertainty weighting [17], DWA [20],
and Auto-λ [21], PCGrad [42], CAGrad [19], MGDA-UB [32], and RLW [18]. Following
[25], our main metric is the multi-task performance ∆MTL of a model m as the averaged
normalized drop in performance w.r.t. the single-task baselines b:

∆MTL =
1
T

T

∑
i=1

(−1)li
(
Mm,i −Mb,i

)
/Mb,i (6)

where li = 1 if a lower value means better performance for metric Mi of task i, and 0 otherwise.
Furthermore, similar to [27], we compute the mean rank (MR) as the average rank of each
method across the different tasks, where a lower MR indicates better performance. All
reported results for InterroGate and baselines are averaged across 3 random seeds.

Finally, to generate the trade-off curve between MTL performance and compute cost
of InterroGate in Figure 3 and all the tables, we sweep over the gate sparsity regularizer
weight, λs, in the range of {1,3,5,7,10} · 10−2. The task-specific targets τ in (4) also
impact the computation cost. Intuitively, tasks with significant performance degradation
benefit from more task-specific parameters, i.e., from higher values of the hyperparameters τt .
We analyze the gating patterns for sharing and specialization in section 4.3.2 and, through
ablation experiments, we further discuss the impact of sparsity targets {τt}T

t=1 in Appendix
F.3. While InterroGate primarily aims at improving the inference cost efficiency, we also
measure and report training time comparison between our method and the baselines, on the
PASCAL-Context [6] dataset in Appendix E.

InterroGate

(a) (b) (c)

InterroGate
InterroGate
InterroGate InterroGate

Figure 3: Accuracy vs. floating-point operations (FLOP) trade-off curves for InterroGate and SoTA MTL
methods. (a) Results on CelebA using ResNet-20 backbone at three different widths (Original, Half, and
Quarter). (b) NYUD-v2 using DPT with ViT-small backbone, and (c) ResNet-18 on PASCAL-Context.

4.2 Results
CelebA. Figure 3a shows the trade-off between MTL performance and the computa-

tional cost (FLOPs) for InterroGate, MTL uniform, and STL baselines on the CelebA dataset,
for 3 different widths for the ResNet-20 backbone: quarter, half, and original capacity. We
report the detailed results in Table 9, Appendix F.1. InterroGate outperforms MTL uniform
and STL baselines with higher overall accuracy at a much lower computational cost. Most
notably, the performance of InterroGate with ResNet-20 half width at only 14.8 MFlops
matches the performance of STL with 174 MFlops. Finally, we further discuss the behavior
of InterroGate and MTL baselines across different model capacities in section 4.3.3.

NYUD-v2. Table 1 & 2 present the results on the NYUD-v2 dataset, using the HRNet-18
and ResNet-50 backbones, respectively. We additionally report the parameter count and
the standard deviation of the ∆MTL scores in Table 10 & 11, in Appendix F.1. As can be
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seen, most MTL methods improve the accuracy on the segmentation and depth estimation
tasks, while surface normal prediction significantly drops. While MTL uniform and MTO
strategies operate at the lowest computational cost by sharing the full backbone, they fail
to compensate for this drop in performance. MTO approaches often show mixed results
across the two backbones. While CAGrad [19] and uncertainty weighting [17] are the best
performing MTO baselines using ResNet-50 and HRNet-18 backbones, respectively, they
show negligible improvement over uniform MTL when applied to the alternate backbones.
In contrast, among the encoder-based methods, Cross-stitch largely retains performance on
normal estimation and achieves a positive ∆MTL score of +1.66. However, this comes at a
substantial computational cost and parameter count, close to that of the STL baseline. In
comparison, InterroGate achieves an overall ∆MTL score of +2.06 and +2.04 using HRNet-18
and ResNet-50, respectively, at a lower computational cost. At an equal parameter count of
92.4 M, InterroGate surpasses MTAN using ResNet-50, exhibiting a ∆MTL score of +1.16, in
contrast to MTAN’s -0.84 (Table 11 in Appendix F.1).

Table 3 & 4 report the performance of DPT trained models with the ViT-base and ViT-
small backbones, and Figure 3b illustrates the trade-off between ∆MTL and computational
costs of various methods using the ViT-small backbone. The MTL uniform and MTO
baselines, display reduced computational cost, yet once again manifesting a performance
drop in the normals prediction task. Similar to the trend between HRNet-18 and ResNet-50,
the performance drop is more substantial for the smaller model, ViT-small, indicating that
task interference is more prominent in small capacity settings. In comparison, InterroGate
consistently demonstrates a more favorable balance between the computational cost and the
overall MTL accuracy across varied backbones.

Table 1: Results on NYUD-v2 with HRNet-18.
Model Semseg ↑ Depth ↓ Normals ↓ ∆MTL (%) ↑ Flops (G) MR↓

STL 41.70 0.582 18.89 0 65.1 8.0
MTL (Uni.) 41.83 0.582 22.84 -6.86 24.5 11.0
DWA 41.86 0.580 22.61 -6.29 24.5 8.7
Uncertainty 41.49 0.575 22.27 -5.73 24.5 8.3
Auto-λ 42.71 0.577 22.87 -5.92 24.5 8.0
RLW 42.10 0.593 23.29 -8.09 24.5 11.7

PCGrad 41.75 0.581 22.73 -6.70 24.5 10.3
CAGrad 42.31 0.580 22.79 -6.28 24.5 8.7
MGDA-UB 41.23 0.625 21.07 -6.68 24.5 11.3

InterroGate 43.58 0.559 19.32 +2.06 43.2 1.3
InterroGate 42.95 0.562 19.73 +0.68 38.3 2.3
InterroGate 42.36 0.564 20.04 -0.55 36.0 4.0
InterroGate 42.73 0.575 21.01 -2.55 33.1 4.0
InterroGate 42.35 0.575 21.70 -4.07 29.2 5.7

Table 2: Results on NYUD-v2 with ResNet-50.
Model Semseg ↑ Depth ↓ Normals ↓ ∆MTL (%) ↑ Flops (G) MR↓

STL 43.20 0.599 19.42 0 1149 9.0
MTL (Uni.) 43.39 0.586 21.70 -3.04 683 9.7
DWA 43.60 0.593 21.64 -3.16 683 9.7
Uncertainty 43.47 0.594 21.42 -2.95 683 10.0
Auto-λ 43.57 0.588 21.75 -3.10 683 10.0
RLW 43.49 0.587 21.54 -2.74 683 8.3

PCGrad 43.74 0.588 21.55 -2.66 683 7.3
CAGrad 43.57 0.583 21.55 -2.49 683 7.0
MGDA-UB 42.56 0.586 21.76 -3.83 683 11.3

MTAN 44.92 0.585 21.14 -0.84 683 4.0
Cross-stitch 44.19 0.577 19.62 +1.66 1151 2.7

InterroGate 44.38 0.576 19.50 +2.04 916 1.7
InterroGate 43.63 0.577 19.66 +1.16 892 3.7
InterroGate 43.05 0.589 19.95 -0.50 794 9.7

PASCAL-Context. Table 5 summarizes the results of our experiments on the PASCAL-
context dataset encompassing five tasks. Note that following previous work, we use the task
losses’ weights ωt from [25] for all MTL methods, but also report MTL uniform results as
a reference. Figure 3c illustrates the trade-off between ∆MTL and the computational cost of
all models. The STL baseline outperforms most methods on the semantic segmentation and
normals prediction tasks with a score of 14.70 and 66.1, while incurring a computational cost
of 670 GFlops. Among the baseline MTL and MTO approaches, there is a notable degradation
in surface normal prediction. Finally, as witnessed in prior works [5, 25, 36], we observe
that most MTL and MTO baselines struggle to reach STL performance. Among competing
methods, MTAN and MGDA-UB yield the best MTL performance versus computational cost
trade-off, however, both suffer from a notable decline in normals prediction performance.

At its highest compute budget (no sparsity loss and negligible computational savings), In-
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Table 3: Results on NYUD-v2 using ViT-base.
Model Semseg ↑ Depth ↓ Normals ↓ ∆MTL (%) ↑ Flops (G) MR↓

STL 51.65 0.548 19.04 0 759 5.0
MTL (Uni.) 51.38 0.539 20.73 -2.57 294 7.3
DWA 51.66 0.536 20.98 -2.66 294 6.0
Uncertainty 51.87 0.5352 20.72 -2.02 294 4.0

InterroGate 51.98 0.528 19.10 +1.32 626 1.3
InterroGate 51.46 0.536 19.34 +0.08 483 5.0
InterroGate 51.66 0.534 20.16 -1.10 387 3.7
InterroGate 51.71 0.535 20.38 -1.51 324 3.7

Table 4: Results on NYUD-v2 using ViT-small.
Model Semseg ↑ Depth ↓ Normals ↓ ∆MTL (%) ↑ Flops (G) MR↓

STL 46.58 0.583 21.22 0 248 4.0
MTL (Uni.) 45.32 0.576 22.86 -3.04 118 7.3
DWA 45.74 0.5721 22.94 -2.68 118 5.7
Uncertainty 45.67 0.5737 22.80 -2.60 118 5.7

InterroGate 45.96 0.5648 20.77 +1.30 229 1.7
InterroGate 45.34 0.5671 20.96 +0.43 183 4.0
InterroGate 45.57 0.5666 21.36 +0.00 168 4.0
InterroGate 45.99 0.5713 22.02 -1.01 132 3.7

terroGate outperforms the STL baseline, notably in Saliency and Human parts prediction tasks,
and achieves an overall ∆MTL of +0.56. As we reduce the computational cost by increasing
the sparsity loss weight λs, we observe a graceful decline in the multi-task performance. Our
InterroGate models consistently obtain more favorable MR scores compared to the baselines.
This emphasizes our model’s ability to maintain a favorable balance between compute cost
and multi-task performance across computational budgets.

Table 5: Performance comparison on PASCAL-Context.
Model Semseg ↑ Normals ↓ Saliency ↑ Human ↑ Edge ↓ ∆MTL(%) ↑ Flops (G) MR↓

STL 66.1 14.70 0.661 0.598 0.0175 0 670 6.0
MTL (uniform) 65.8 17.03 0.641 0.594 0.0176 -4.14 284 12.0
MTL (Scalar) 64.3 15.93 0.656 0.586 0.0172 -2.48 284 10.6
DWA 65.6 16.99 0.648 0.594 0.0180 -3.91 284 12.0
Uncertainty 65.5 17.03 0.651 0.596 0.0174 -3.68 284 10.2
RLW 65.2 17.22 0.660 0.634 0.0177 -2.87 284 9.2

PCGrad 62.6 15.35 0.645 0.596 0.0174 -2.58 284 12.0
CAGrad 62.3 15.30 0.648 0.604 0.0174 -2.03 284 10.2
MGDA-UB 63.0 15.34 0.646 0.604 0.0174 -1.94 284 10.2

Cross-stitch 66.3 15.13 0.663 0.602 0.0171 +0.14 670 4.0
MTAN 65.1 15.76 0.659 0.590 0.0170 -1.78 319 9.0

InterroGate 65.7 14.71 0.663 0.606 0.0172 +0.56 664 3.2
InterroGate 65.1 14.64 0.663 0.604 0.0172 +0.42 577 4.8
InterroGate 65.2 14.75 0.663 0.600 0.0172 +0.12 435 5.4
InterroGate 64.9 14.72 0.658 0.596 0.0172 -0.28 377 7.6
InterroGate 65.1 15.02 0.655 0.592 0.0172 -0.85 334 8.8

Table 6: Comparing the MTL performance using the L1
Hinge loss and the standard L1 loss on PASCAL-Context.
Model Lsparsity Semseg ↑ Normals ↓ Saliency ↑ Human ↑ Edge ↓ ∆MTL(%) ↑ Flops (G) MR↓

InterroGate None 65.7 14.71 0.663 0.606 0.0172 +0.56 664 1.8

InterroGate L1 63.9 14.74 0.664 0.600 0.0172 -0.27 623 2.8
InterroGate L1 61.1 15.07 0.663 0.582 0.0172 -2.20 518 4.0

InterroGate Hinge 65.1 14.64 0.648 0.604 0.0171 +0.28 557 2.2
InterroGate Hinge 65.2 14.75 0.644 0.600 0.0172 -0.13 433 3.4

Table 7: Performance across various model
capacities using the ResNet-20 and ResNet-50
backbones on the CelebA (up) and NYUD-v2
(bottom) tasks.

Model Gender ↑ Age ↑ Clothes ↑ Overall ↑ Flops (M) MR↓

STL 97.50 86.02 93.00 92.17 174 2.0
MTL 97.28 86.70 92.35 92.11 58 2.7
InterroGate 97.60 87.44 92.40 92.48 59 1.3

STL 96.99 85.60 92.72 91.77 44.4 2.3
MTL 97.02 86.41 92.11 91.85 14.8 2.0
InterroGate 97.33 86.75 92.05 92.05 15.5 1.7

STL 96.64 85.22 92.19 91.35 11.6 2.0
MTL 96.46 85.46 91.59 91.17 3.9 2.3
InterroGate 96.81 86.05 91.48 91.45 4.7 1.7
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Model Semseg ↑ Depth ↓ Normals ↓ ∆MTL (%) ↑ Flops (G) MR↓

STL 43.20 0.599 19.42 0 1149 2.3
MTL 43.39 0.586 21.70 -3.02 683 2.3
InterroGate 43.63 0.577 19.66 +1.16 892 1.3

STL 39.72 0.613 20.06 0 415 2.3
MTL 40.20 0.610 22.78 -3.98 296 2.0
InterroGate 39.78 0.591 20.41 +0.63 348 1.7

STL 35.44 0.654 21.21 0 177 2.3
MTL 35.68 0.632 24.57 -4.06 147 2.3
InterroGate 35.71 0.624 21.75 +0.94 164 1.3
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4.3 Ablation Studies

4.3.1 Sparsity Loss
To study the effect of the sparsity loss defined in Equation 4, we conduct the following

two experiments: First, we omit the sparsity regularization loss (λs = 0): As can be seen in the
first row of Table 6, InterroGate outperforms the single task baseline, but the computational
savings are very limited. Next, we compare the use of the L1 hinge loss with a standard
L1 loss function as the sparsity regularizer. The results of Table 6 show that the hinge loss
formulation consistently yields better trade-offs.

4.3.2 Learned Sharing and Specialization Patterns
We then investigate the gating patterns that the model converges to. Specifically, we want

to observe how much each task contributes to and benefits from the shared representations.
To that aim, we monitor (i) the percentage of task-specific representations selected by each
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Figure 4: The task-specific representation selection ratio (top) versus proportions of maximum contribu-
tions to the shared branch (bottom) for InterroGate with hinge loss (left), L1 loss with medium pruning
(middle) and L1 loss with high pruning (right).

task (captured by the gates Gt(αt)), as well as (ii) how much the features specific to each task
contribute to the formation of the shared feature bank (captured by the learned combination
weights β ); We visualize these values for the five tasks of the Pascal-Context dataset in
Figure 4, for different sparsity regularizers: with hinge loss (left), with L1 loss at medium
(middle) and high pruning levels (right). In all settings, the semantic segmentation task
makes the largest contribution to the shared branch, followed by the normals prediction task.
Interestingly, we show that when the normals prediction task acquires sufficient task-specific
features, it maintains a high accuracy. We provide more detailed discussion on the learned
sharing and specialization patterns in Appendix F.2.

4.3.3 Impact of Model Capacity
In this section, we conduct an ablation study to analyze the relationship between model

capacity and multi-task performance. We progressively reduce the width of ResNet-50 and
ResNet-20 to half and a quarter of the original sizes for NYUD-v2 and CelebA datasets,
respectively. Shrinking the model size, as observed in Table 7, incurs progressively more
harmful effect on multi-task performance compared to the single task baseline. In comparison,
our proposed InterroGate approach consistently finds a favorable trade-off between capacity
and performance and improves over single task performances, across all capacity ranges.

5 Discussion and Conclusion

In this paper, we propose InterroGate, a novel MTL framework to address the fundamental
challenges of task interference and computational constraints during inference. InterroGate
leverages a learnable gating mechanism that enables individual tasks to select and combine
channels from both a specialized and shared feature set. By regularizing the learnable
gates, we can strike a balance between task-specific resource allocation and overarching
computational costs. InterroGate demonstrates state-of-the-art performance across various
architectures and on notable benchmarks such as CelebA, NYUD-v2, and Pascal-Context.
The gating mechanism in InterroGate operates over the channel dimension, or the embedding
dimension in the case of ViTs, which in its current form does not support structured pruning
for attention matrix computations. Future work might integrate approaches like token gating
to further optimize computational efficiency.

Limitations. While our method is more effective in resolving task-interference via
dedicated task-specific parameters, it comes with an increase in the total number of parameters
compared to MTO approaches. Furthermore, although both λs and τt can control the trade-off
between performance and computational cost, effectively approximating the desired FLOPs,
we still cannot guarantee a specific target FLOP.
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