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In this supplementary material, we present a detailed introduction to the datasets used in
Section 1. Furthermore, additional ablation studies on the negative loss terms and threshold
tuning, along with t-SNE visualizations, are unveiled in Section 2 and Section 3, respectively.

1 Datasets
In this study, we conduct experiments on three widely used datasets: VGGSound [2], UCF
[10], and ActivityNet [4].
VGGSound: The VGGSound dataset is a large-scale audio-visual dataset consisting of short
clips of audio sounds extracted from videos uploaded to YouTube. It is designed to be a
comprehensive resource for studying the correspondence between audio and visual elements
in diverse and challenging acoustic environments. We selected 276 classes that are clearly
labeled in our experiment, resulting in 93,752 videos.
UCF: The UCF101 dataset is widely recognized for action recognition in videos. As an
extension of the UCF50 dataset, it is notable for its diversity and complexity, making it one
of the most challenging datasets for video-based human action recognition. We included
only the 51 classes that contain audio information, resulting in 6,816 videos.
ActivityNet: The ActivityNet dataset is a large-scale video benchmark designed for human
activity understanding. It contains 200 different types of activities across 20,348 video clips
collected from YouTube. This dataset is significant for its size and diversity, making it a
challenging and comprehensive benchmark for temporal activity detection.

2 Additional Ablation Study

2.1 Effects of Negative Loss Terms of Unseen Classifier
As explained in Section 3.4, prior research often focuses solely on losses associated with
positive samples [5, 6, 7, 8, 11], while neglecting losses from negative samples. To foster
more robust training, we accord them equal importance and compute all three types of losses
for both positive and negative samples. We present an ablation study of different loss terms in
Table 1. UCacc denotes the accuracy of the unseen classifier, while HM scores are provided
with other parts of the model weights fixed for a fair comparison. It is evident that the
inclusion of L−

trip alone can remarkably enhance scores. Taking VGGSound as an example,
L++L−

trip yields 8.35% and 10.36% for UCacc and HM, respectively, surpassing L+ alone
with scores of 7.83% and 9.92%. On the other hand, while the addition of either L−

rec or L−
reg

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Chen, Xie, Vedaldi, and Zisserman} 2020

Citation
Citation
{Soomro, Zamir, and Shah} 2012

Citation
Citation
{Heilbron, Escorcia, Ghanem, and Niebles} 2015

Citation
Citation
{Hong, Hayder, Han, Fang, Harandi, , and Petersson} 2023

Citation
Citation
{Li, Ma, Deng, Man, and Fan} 2023{}

Citation
Citation
{Li, Zhao, Ma, Wang, Fan, , and Tian} 2023{}

Citation
Citation
{Li, Luo, and Du} 2023{}

Citation
Citation
{Zheng, Hong, and Farazi} 2023



2 LIUYUAN WEN: OOD DETECTION FOR AV-GZSL: A GENERAL FRAMEWORK

Table 1: Effects of negative loss terms of unseen classifier

Loss
VGGSound UCF ActivityNet

UCacc HM UCacc HM UCacc HM

L+ 7.83 9.92 20.69 29.86 9.9 12.83
L++L−

trip 8.35 10.36 25.31 34.9 9.81 12.9
L++L−

rec 7.36 9.62 18.77 27.19 9.42 12.72
L++L−

reg 7.33 9.43 21.81 30.99 8.88 11.97
L++L−(ours) 8.78 11.16 28.21 37.89 11.49 14.38
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Figure 1: Effects of OOD-entropy thresholds on HM, TPR, and FPR across three datasets.
In each figure, the left vertical axes correspond to HM lines, while the right axes correspond
to TPR and FPR lines. Red dots and words represent the average entropy of seen classes
from the training data, which evidently aligns closely with the value maximizing HM.

alone does not seem particularly effective, the combination of all three negative loss terms
performs admirably. Indeed, L++L− outperforms L+ in all aspects, achieving the highest
scores of 8.78% and 11.16% on VGGSound.

2.2 Parameter Tuning of Thresholds of OOD-entropy

All three bias reduction methods explored in Section 4.3.1 require parameter tuning of
thresholds, outputs exceeding or falling below which are categorized as seen or unseen
accordingly. Figure 1 illustrates the curves of HM, TPR, and FPR as they change with
entropy thresholds. Unlike Calibrated Stacking and OOD-binary, whose thresholds neces-
sitate tuning through iterative processes such as “for” loops, the thresholds of OOD-entropy
can be readily determined using the average entropy of seen classes from the training data
(indicated by red dots and the descriptor mean threshold in Figure 1). It’s evident that all
mean thresholds closely align with the value that maximizes HM. Additionally, we observe
significant variation in thresholds corresponding to the points with the highest HM across
different datasets, namely 0.6, 0.024, and 0.00095 for VGGSound, UCF, and ActivityNet re-
spectively. This variability underscores the inefficiency of tuning entropy thresholds through
iterative loops.
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Figure 2: Comparison between Baseline and our AV-OOD in t-SNE visualizations from test
classes across three datasets. In each subplot, we plot 6 seen classes and 6 unseen classes,
with 15 samples randomly selected from each category. As to legends, Ture and False denote
correctly or incorrectly classified samples respectively. Thus, as an example, Seen False
refers to incorrectly classified samples from seen classes. (They can be misclassified as
either a seen class or an unseen class. This is not reflected in the figure.)

3 Qualitative Results
In Figure 2, we present t-SNE visualizations for comparison between the Baseline AVCA [9]
and our proposed AV-OOD. Feature embeddings are obtained using attributes a⊕ v, and all
of them are grouped into four categories: Seen True, Seen False, Unseen True, and Unseen
False. We can clearly see that AV-OOD outperforms Baseline in terms of both seen and
unseen classes. Although Baseline adopts calibrated stacking to reduce bias towards seen
classes, this method comes at the cost of sacrificing the accuracy of seen classes. This
highlights the superiority of our framework, where the OOD detector and separate expert
classifier cooperate, resulting in better overall performance.

References
[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks.

In ICML, volume 70, pages 214–223, 2017.

[2] H. Chen, W. Xie, A. Vedaldi, and A. Zisserman. Vggsound: A large-scale audio-visual
dataset. In ICASSP, pages 721–725, May 2020.

Citation
Citation
{Mercea, Riesch, Koepke, and Akata} 2022



4 LIUYUAN WEN: OOD DETECTION FOR AV-GZSL: A GENERAL FRAMEWORK

[3] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved
training of wasserstein gans. In NeurIPS, volume 30, 2017.

[4] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Carlos Niebles. Activitynet: A large-
scale video benchmark for human activity understanding. In CVPR, pages 961–970,
2015.

[5] Jingwei Hong, Zulqarnain Hayder, Junting Han, Ping Fang, Mehrtash Harandi, , and
Lars Petersson. Hyperbolic audio-visual zero-shot learning. In ICCV, pages 7873–
7883, 2023.

[6] Wenrui Li, Zhengyu Ma, Liang-Jian Deng, Hengyu Man, and Xiaopeng Fan. Modality-
fusion spiking transformer network for audio-visual zero-shot learning. In ICME, pages
426–431, 2023.

[7] Wenrui Li, Xi-Le Zhao, Zhengyu Ma, Xingtao Wang, Xiaopeng Fan, , and Yonghong
Tian. Motion-decoupled spiking transformer for audio-visual zero-shot learning. In
ACM MM, pages 3994–4002, 2023.

[8] Yapeng Li, Yong Luo, and Bo Du. Audio-visual generalized zero-shot learning based
on variational information bottleneck. In ICME, pages 450–455, 2023.

[9] O. B. Mercea, L. Riesch, A. Koepke, and Z. Akata. Audio-visual generalised zero-
shot learning with cross-modal attention and language. In CVPR, pages 10553–10563,
2022.

[10] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions classes
from videos in the wild. arXiv preprint, 2012.

[11] Q. Zheng, J. Hong, and M. Farazi. A generative approach to audio-visual generalized
zero-shot learning: Combining contrastive and discriminative techniques. In IJCNN,
pages 1–8, 2023.


