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Abstract

Generalized Zero-Shot Learning (GZSL) is a challenging task requiring accurate
classification of both seen and unseen classes. Within this domain, Audio-visual GZSL
emerges as an extremely exciting yet difficult task, given the inclusion of both visual
and acoustic features as multi-modal inputs. Existing efforts in this field mostly uti-
lize either embedding-based or generative-based methods. However, generative training
is difficult and unstable, while embedding-based methods often encounter domain shift
problem. Thus, we find it promising to integrate both methods into a unified framework
to leverage their advantages while mitigating their respective disadvantages. Our study
introduces a general framework employing out-of-distribution (OOD) detection, aiming
to harness the strengths of both approaches. We first employ generative adversarial net-
works to synthesize unseen features, enabling the training of an OOD detector alongside
classifiers for seen and unseen classes. This detector determines whether a test feature
belongs to seen or unseen classes, followed by classification utilizing separate classifiers
for each feature type. We test our framework on three popular audio-visual datasets and
observe a significant improvement comparing to existing state-of-the-art works. Codes
can be found in https://github.com/liuyuan-wen/AV-OOD-GZSL.

1 Introduction

The fusion of acoustic and visual cues in human communication and scene comprehension
enjoys widespread recognition, demonstrating notable advancements in various applications
such as action recognition [11, 12], emotion recognition [24, 28], speech recognition [1,
21] and so on. Despite these advancements, gathering sufficient annotated data for task-
specific audio-visual representations remains a daunting challenge. Zero-shot learning (ZSL)
arises as a feasible solution, enabling the classification of instances from novel classes by
leveraging knowledge acquired from known classes. The more intricate Generalized ZSL
(GZSL) further extends this capability to classify test samples from both seen and unseen
classes. In this work, we tackle Audio-Visual Generalized Zero-Shot Learning (AV-GZSL)
classification task .
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Figure 1: Our general framework. A generator is used to synthesize features, enabling the
training of an OOD detector and separate classifiers for seen and unseen classes. OOD
detector distinguishes seen and unseen features for separate classification. Different modality
fusion methods (Fusion 1-5) can be implemented in different stages. (Blue and green arrows
stands for training process using seen and synthesized unseen features respectively. Red
arrows represents evaluation process. Dashed lines means “optional”.)

Recently, several studies [17, 22] have delved into the field of AV-GZSL, innovating
methods that project both modalities into a common embedding space and measure distances
from class label text embeddings. Mercea et al. [19] introduced a integrated framework,
employing a transformer-based cross-attention mechanism on temporally averaged audio
and visual input features. Subsequently, numerous subsequent works have emerged, such
as [10, 13, 14, 15, 18], including a partially generative approach [29] which synthesizes
unseen features as negative samples in contrastive loss. However, all these approaches are
essentially embedding-based and suffer significantly from the domain shift problem [23].
Although they employed calibrated stacking [5] to reduce the bias, it is merely a temporary
solution with limited effectiveness.

From our perspective, on one hand, it is crucial to devise a comprehensive and promising
strategy to address the domain shift problem. On the other hand, we also acknowledge the
difficulty and instability of generative training, and the bias problem inherent in embedding
methods. Therefore, we believe that integrating both approaches into a unified framework
holds promise, allowing us to leverage the advantages of each method while mitigating their
respective disadvantages.

In this study, we present a general framework named Audio-Visual Out-Of-Distribution
(AV-OOD), as depicted in Figure 1. We first employ a generative model to synthesize unseen
features, facilitating the training of an OOD detector alongside two separate classifiers for
seen and unseen classes. Given the significance of modality fusion in multi-modal learning,
different fusion methods (Fusion 1-5) can be implemented at various stages to fine-tune
model design. During evaluation, the detector assesses whether a test feature belongs to
seen or unseen classes, followed by classification using separate classifiers tailored to each
feature type. In our experiment, we implement WGAN-GP [2, 8] as the feature generator,
two Multilayer Perceptrons (MLPs) for both the OOD detector and the seen classifier. Lastly,
an embedding-based model, adapted from [19], serves as the unseen classifier.

Furthermore, the generator can optionally synthesize novel seen or unseen features to
aid in classifier training. However, in this work, we refrain from this approach due to our
observation that the performance of our generator is not sufficiently satisfactory for synthe-
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sizing discriminative trainable samples. Hence, we leave this option for future investigation.
This decision also explains why we exclusively utilize the generator for training the OOD
detector, as the precise manifold and distribution structure of unseen classes is less critical
when only distinguishing between seen and unseen classes.

This framework is designed to be universal, as each component of the model operates
relatively independently. Although we will introduce specific models for each part in Section
3, researchers can enhance overall performance by merely substituting any of them. For
instance, models that excel in ZSL, such as spiking neural networks, can replace the unseen
classifier, or a superior feature generative network can replace the WGAN-GP used in this
work.
Contributions:
(1) We are the first to introduce OOD detection to the field of AV-GZSL, alongside a general
framework integrating both embedding-based and generative-based methods. This integra-
tion enables us to effectively harness the advantages of both approaches.
(2) Each component of the framework operates relatively independently and each can be re-
placed with more effective alternatives, facilitating future researches in terms of structuration
and overall performance.
(3) We evaluate our framework on three widely-used audio-visual datasets and observe a
significant improvement compared to existing state-of-the-art approaches.

2 Related Works

2.1 Audio-visual Generalized Zero-Shot Learning

In the realm of AV-GZSL, embedding-based models are proposed aiming to map video,
audio, and text into a shared feature space for comparison. Initially proposed in [22],
Coordinated Joint Multimodal Embedding (CJME) utilized triplet loss for proximity be-
tween modal features and class features. Audio-Visual Generalized Zero-shot Learning
Network (AVGZSLNet) [17] introduced a module reconstructing text features from visual
and audio inputs. Audio-Visual Cross-modal Attention (AVCA) [19] leveraged cross-modal
attention mechanisms, effectively integrates information from both modalities. Tempo-
ral Cross-attention Framework (TCAF) [18] proposed a temporal cross-attention frame-
work to enhance cross-attention across modalities and time. Audio-Visual Feature Synthesis
(AVFS) [29] simulated unseen features with generative models, combining contrastive and
discriminative losses. Variational Information Bottleneck for AV-GZSL (VIB-GZSL) [15] is
a method based on variational information bottleneck. Audio-Visual Modality-fusion Spik-
ing Transformer (AVMST) [13] and Motion-Decoupled Spiking Transformer (MDFT) [14]
utilized spiking neural networks to process highly sparsity event data efficiently. Hyper-
multiple [10] used a hyperbolic transformation to achieve curvature-aware geometric learn-
ing.

All works above are essentially embedding-based methods including AVFS which only
did an shallow addition and still suffered from bias problem. Our proposed framework is
a fundamental solution for bias problem by implementing OOD detection, which integrates
both embedding-based and generative-based methods.
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Figure 2: We employ MLPs as the seen classifier and OOD detector, an embedding-based
model as the unseen classifier, and WGAN-GP for feature generation. Extracted features a, v,
t stands for audio, visual, text respectively. Fusion methods involve simple concatenation ⊕
except for Fusion-5 in the unseen classifier, which utilizes cross-attention. The synthesized
unseen features ã⊕ v along with seen ones a⊕ v are input for training of the OOD Detector,
which distinguishes seen and unseen features for separate classification during test stage.
(Blue and green arrows depict the training process using real seen and synthesized unseen
features respectively. Red arrows represents evaluation process.)

2.2 Out-Of-Distribution Detection

Out-of-distribution (OOD) detection serves as a crucial method in GZSL, focusing on distin-
guishing between seen and unseen classes during inference to prevent the model from biased
predictions towards the known categories. Socher et al. [25] pioneered the introduction of a
binary novelty random variable for novelty detection. Atzmon et al. [4] proposed an adaptive
confidence smoothing method, serving as a gating model for OOD detection. Subsequently,
a variety of methods emerged, including entropy-based [16], probabilistic-based [27], and
boundary-based [7], among others.

In this study, we primarily employ entropy-based methods [16] and integrate them into
AV-GZSL alongside more expert classifiers. We evaluate two types of entropy losses and
conduct a comparative analysis against the traditional calibrated stacking for the first time.

3 Model Architecture

In this section, we will introduce each component of the framework utilized in this study
as Figure 2 shows. In general, we employ a conditional WGAN-GP [2, 8] as the feature
generator, an MLP equipped with entropy-based loss as the OOD detector [16], another
MLP serving as the seen classifier, and an embedding-based model adapted from AVCA
[19] as the unseen classifier.

Citation
Citation
{Socher, Ganjoo, Manning, and Ng} 2013

Citation
Citation
{Atzmon and Chechik} 2019

Citation
Citation
{Mandal, Narayan, Dwivedi, Gupta, Ahmed, Khan, and Shao} 2019

Citation
Citation
{Wang, Pang, and Zhu} 2020

Citation
Citation
{Chen, Lan, Sun, and Zheng} 2020{}

Citation
Citation
{Mandal, Narayan, Dwivedi, Gupta, Ahmed, Khan, and Shao} 2019

Citation
Citation
{Arjovsky, Chintala, and Bottou} 2017

Citation
Citation
{Gulrajani, Ahmed, Arjovsky, Dumoulin, and Courville} 2017

Citation
Citation
{Mandal, Narayan, Dwivedi, Gupta, Ahmed, Khan, and Shao} 2019

Citation
Citation
{Mercea, Riesch, Koepke, and Akata} 2022{}



LIUYUAN WEN: OOD DETECTION FOR AV-GZSL: A GENERAL FRAMEWORK 5

3.1 Feature Generator
We opt for a conditional WGAN-GP with an additional loss as our feature generator, inspired
by its recent success in video classification [16]. On top of that, AV-GZSL requires an
additional step of modality fusion, where we simply concatenate audio and visual features
as x = a⊕v. And the synthesized features are represented as x̃ = ã⊕ v. The training process
involves three distinct loss components: LWGAN, Lrec and Lemb.
Conditional WGAN-GP loss. A generator G and a discriminator D are employed in GAN.
We denote the generated feature as x̃ = G(z, t) where z ∼ N(0,1), the convex combination of
x and x̃ as x̂, and the penalty coefficient as λ . Thus, conditioned on the textual embedding t,
the expression is:

LWGAN = E[D(x, t)]−E[D(x̃, t)]−λE
[
(∥∇x̂D(x̂, t)∥2 −1)2

]
. (1)

Reconstruction loss. A decoder is utilized to reconstruct the class embedding t from the
synthesized x̃ for generated features to be discriminative. Let Odec represent the outputs of
the decoder, and MSE represent the Mean Square Error metric, then Lrec = MSE(Odec, t).
Embedding loss. We organize the real and synthesized features as matched (same classes)
and unmatched (different classes) pairs. Then, a Cosine Embedding loss CE is employed to
minimize and maximize the distance between the matched and unmatched features, respec-
tively. Thus, Lemb = CE(x, x̃).

Thereby the total loss for feature generator is:

Lgen = min
G

max
D

LWGAN +αLrec +βLemb, (2)

where α and β are weight coefficients.

3.2 Out-Of-Distribution Detector
Our OOD detector takes real seen and synthesized unseen features as positive and nega-
tive inputs, respectively. It outputs the probability of samples belonging to seen or unseen
classes. In practice, we set a specific threshold, where outputs exceeding or falling below are
categorized as seen or unseen accordingly.

We evaluate two types of OOD detectors, binary and entropy classifiers (See Section
4.4), both implemented as 3-layer MLPs denoted as Obin and Oent .

Obin is a straightforward classifier using Binary Cross Entropy loss

Lbin = BCE(Obin(x),1)+BCE(Obin(x̃),0) . (3)

However, Obin proves inadequate due to the complex boundaries between seen and unseen
classes (See Section 4.4.1). Therefore, we adopt an information entropy-based classifier with
loss

Lent = H(Oent(x))−H(Oent(x̃)) , (4)

where H(p) = −∑i pi log(pi) represents the entropy of p. Entropy effectively quantifies
the uncertainty of features; the lower a feature’s entropy, the more likely it belongs to seen
classes. Additionally, we include a Cross Entropy loss to accelerate convergence:

Lce = CE(Oent(x),y(x)), (5)

where y(x) is the corresponding label of sample x. Thus, the total loss for the OOD detector
becomes Lood = Lent +Lce.

Citation
Citation
{Mandal, Narayan, Dwivedi, Gupta, Ahmed, Khan, and Shao} 2019



6 LIUYUAN WEN: OOD DETECTION FOR AV-GZSL: A GENERAL FRAMEWORK

3.3 Seen Classifier
We adopt a 3-layer MLP for our seen classifier, finding it more stable and efficient compared
to overly complex model structures (See Section 4.4.2). It takes x = a ⊕ v as input and
employs Cross Entropy loss Lsc = CE(x,y(x)), y(x) is the corresponding label of sample x.

3.4 Unseen Classifier
We enhance the AVCA [19] framework by introducing an additional negative loss compo-
nent and take it as our unseen classifier. Instead of simple concatenation, we employ a
transformer-based cross-attention for modality fusion.

As shown on the right side of Figure 2, in each training session, features a and v un-
dergo a cross-attention block after being embedded into the same dimension as t by encoders
AAAenc and VVV enc. This block facilitates the exchange of semantics among different modalities,
capitalizing on shared cross-modal information. Subsequently, projectors VVV pro j, AAApro j, and
WWW pro j project all modalities of samples into a common embedding space. Following this, the
remaining procedures, including decoding, reconstruction, and backward process, are con-
ducted for loss calculation. During evaluation, all three modalities are re-projected into the
same joint embedding space as described above for classification. The closest textual label
embedding of the current sample is then selected as the classified target.

To ensure effective feature representation learning, the loss function Luc consists of three
components: triplet loss Ltrip, reconstruction loss Lrec, and regularization loss Lreg. While
a contrastive learning strategy typically randomly selects a negative sample from a different
class for every feature in the baseline, it’s important to note that previous studies often apply
these losses solely for positive samples, neglecting losses from negative samples. To promote
more robust training, we treat them equally and compute all three types of losses for both
positive and negative samples.
Triplet loss. Four types of triplet loss functions cooperate to align contrastive audio, visual,
and textual label embeddings:

L±
trip =T

(
Opro j,±

av ,Opro j,±
t ,Opro j,∓

av

)
+T

(
Opro j,±

t ,Opro j,±
av ,Opro j,∓

t

)
+T

(
Opro j,±

t ,Opro j,±
av ,Opro j,∓

av

)
+T

(
Opro j,±

av ,Opro j,±
t ,Opro j,∓

t

)
,

(6)

where T(·) represents the triplet loss function T(x,y,z) = max{∥x− y∥2 −∥x− z∥2 + µ,0}.
Here, x, y, and z are anchor embeddings, and µ denotes the margin. Opro j,±

m represents
the output from the projector in the joint space, where m ∈ {a,v, t} denotes three modali-
ties. Superscripts {+,−} represent positive and negative samples, respectively. These four
types of triplet loss functions cooperate to align contrastive audio, visual, and textual label
embeddings.
Reconstruction loss. A decoder reconstructs and aligns the initial and final states of textual
features. We define

L±
rec = ∑

m∈{a,v,t}
MSE

(
Odec,±

m , t±
)
, (7)

where Odec,±
m denotes the output tensor from decoder operators, considered as the final state,

and t± represents the input textual features, considered as the initial state.
Regularization loss. The regularization loss encourages the alignment of audio and visual
embeddings with text embeddings while preserving information from their respective input
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modalities. It is expressed as

L±
reg = ∑

m∈{a,v}
MSE

(
Orec,±

m ,Oenc,±
m

)
, (8)

where Orec,±
m and Oenc,±

m represent output samples from reconstructors and encoders, respec-
tively.

Thus, the total loss of the unseen classifier is formulated as Luc = L+ +L−, where
L± = L±

trip +L±
rec +L±

reg.

4 Experiments

4.1 Experimental Setup

We adopt AVCA [19] as our baseline, along with a commonly used benchmark proposed by
them on datasets curated from VGGSound [6], UCF101 [26], and ActivityNet [9]. Notably,
AVCA employs a two-stage training and evaluation protocol where epochs and calibrated
stacking of the second stage are determined by the best performance on the validation set in
the first stage. Since we have replaced calibrated stacking with OOD detection, we only run
the second stage with all epochs fixed, which is equivalent.

For evaluation on the test dataset, we report mean class accuracy for both the Seen (S)
and Unseen (U) subsets, with the Harmonic Mean HM = 2US

U+S . The Zero-Shot Learning
(ZSL) performances are determined solely by evaluating on the test unseen subset.

4.2 Implementation Details

Feature Extractor: Following [19], we extract audio features a and visual features v,
and average them second-wise using self-supervised SeLaVi [3] framework pretrained on
VGGSound[6]. Textual label embeddings t are acquired through word2vec network pre-
trained on Wikipedia [20].
Feature Generator: We employ WGAN-GP [2, 8] with the loss function in Equation 2. In
our experiments, we set α to 0.1 and β to 0.01. Training is conducted over 5 epochs with a
learning rate of 0.0001, using the Adam optimizer.
Out-Of-Distribution Detector: Our detector is a 3-layer MLP with hidden layers of di-
mensions 512 and 128. For training, we generate 50, 50, and 1000 unseen samples from
VGGSound, UCF, and ActivityNet, respectively. Training spans 80 epochs with learning
rates and batch sizes of 0.001/6900 for VGGSound, 0.009/16 for UCF, and 0.005/64 for
ActivityNet.
Seen Classifier: The seen classifier is also a 3-layer MLP, featuring hidden layers of dimen-
sions 512 and 256. Training is conducted over 200 epochs with learning rates and batch sizes
of 0.008/1024 for VGGSound, 0.0006/32 for UCF, and 0.008/128 for ActivityNet.
Unseen Classifier: We utilize triplet loss with a margin µ of 1. Dropout rates for the
encoder/projector/decoder are set at 0.3/0.1/0.2 for VGGSound, 0.5/0.4/0.4 for UCF, and
0.2/0.3/0.2 for ActivityNet. Training spans 50 epochs with learning rates and batch sizes of
0.0005/256 for VGGSound, 0.0024/112 for UCF, and 0.0005/256 for ActivityNet.
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Table 1: Comparison of AV-GZSL performances

Model
VGGSound-GZSL UCF-GZSL ActivityNet-GZSL

S U HM ZSL S U HM ZSL S U HM ZSL

CJME[22] 8.69 4.78 6.17 5.16 26.04 8.21 12.48 8.29 5.55 4.75 5.12 5.84
AVGZSLNet[17] 18.15 3.48 5.83 5.28 52.52 10.90 18.05 13.65 8.93 5.04 6.44 5.40

AVCA[19] 14.90 4.00 6.31 6.00 51.53 18.43 27.15 20.01 24.86 8.02 12.13 9.13
TCAF[18] 9.64 5.91 7.33 6.06 58.60 21.74 31.72 24.81 18.70 7.50 10.71 7.91

VIB-GZSL[15] 18.42 6.00 9.05 6.41 90.35 21.41 34.62 22.49 22.12 8.94 12.73 9.29
AVFS[29] 15.20 5.13 7.67 6.20 54.87 16.49 25.36 22.37 29.00 9.13 13.89 11.18

AVMST[13] 14.14 5.28 7.68 6.61 44.08 22.63 29.91 28.19 17.75 9.90 12.71 10.37
MDFT[14] 16.14 5.97 8.72 7.13 48.79 23.11 31.36 31.53 18.32 10.55 13.39 12.55

Hyper-multiple[10] 15.02 6.75 9.32 7.97 63.08 19.10 29.32 22.24 23.38 8.67 12.65 9.50
AV-OOD (ours) 21.25 7.57 11.16 8.78 65.78 26.61 37.89 28.21 31.9 9.28 14.38 11.49

4.3 Results Analysis

Compared methods. We compare our AV-OOD with current state-of-the-art AV-GZSL
models as introduced in Section 2.1, with methods range from embedding-based ones to
generative-based ones. The results are presented in Table 1.
Comparison of performances. From Table 1, it is evident that AV-OOD stands out as
the top performer across all three datasets. Specifically, AV-OOD achieves a remarkable
HM score of 11.16% on the VGGSound dataset, marking a substantial 77% enhancement
over the baseline AVCA score of 6.31%. Notably, AV-OOD also exhibits outstanding per-
formance on UCF and ActivityNet, with HM scores of 37.89% and 14.38% respectively,
surpassing all competing models. Moreover, the S scores of AV-OOD demonstrate notable
stability, particularly evident on VGGSound and ActivityNet, recording 21.25% and 31.9%
respectively. This commendable performance can be attributed not only to the implementa-
tion of a more efficient MLP for replacing the seen classifier but also to the replacement of
calibrated stacking, which significantly curtails the model’s ability on seen classes. However,
it is noteworthy that while AV-OOD excels in HM scores, its ZSL scores do not achieve the
same level of prominence. This underscores the primary objective of our framework, which
prioritizes enhancing the model’s discrimination between seen and unseen classes rather than
focusing solely on ZSL skills. Nonetheless, despite not reaching the top position in ZSL,
AV-OOD remains notable for its superiority over the baseline AVCA [19] across all metrics.
This can be attributed to our incorporation of losses from negative samples, which evidently
enhance the model’s robustness and learning efficiency.

4.4 Ablation Study

4.4.1 Effect of Different Bias Reduction Methods

As introduced in Section 1, domain shift problem arises due to discrepancies between the
seen and unseen data distributions across different semantic domains. Previous works on
AV-GZSL all adopted Calibrated Stacking [5] as the bias reduction method, which we re-
placed with OOD detection. We tested three bias reduction methods while preserving the
performances of seen and unseen classifiers: Calibrated Stacking, OOD-binary, and OOD-
entropy, to compare their capability of distinguishing between seen and unseen classes. Seen
classes are regarded as positive and in-distribution, while unseen classes are considered neg-
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Figure 3: Comparison between ROC curves of three bias reduction methods on all three
datasets. Obviously, our proposed “OOD-entropy” is the most stable one and gets the best
AUC on two of the three datasets.

Table 2: Comparison of different bias reduction methods

Method
VGGSound UCF ActivityNet

AUC FPR HM AUC FPR HM AUC FPR HM

Calibrated Stacking 66.04 36.43 9.32 60.06 39.78 27.57 69.58 30.82 12.04
OOD-binary 53.66 54.9 7.82 47.09 63.38 17.9 56.34 50.94 10.44

OOD-entropy (ours) 72.59 26.64 10.11 87.66 8.68 37.03 67.09 33.87 11.56

ative and out-of-distribution.

We plot Receiver Operating Characteristic (ROC) curves with True Positive Rate (TPR)
and False Positive Rate (FPR) by sweeping over classification thresholds. Figure 3 displays
all the ROC curves along with their Area Under Curve (AUC). FPR and HM in Table 2
correspond to the threshold that yields a 60% TPR for detecting in-distribution samples.
We can observe that OOD-entropy is the most stable method and achieves the best AUC
on two of the three datasets. Taking UCF as an example, OOD-entropy obtains an AUC
of 87.66%, significantly surpassing 60.06% of Calibrated Stacking and 47.09% of OOD-
binary. Meanwhile, OOD-entropy achieves the lowest FPR of 8.68%, compared to 39.78%
of Calibrated Stacking and 63.38% of OOD-binary. This contributes to the highest HM of
OOD-entropy, reaching 37.03%.

We observed that Calibrated Stacking and OOD-binary fall below the random guess
line in certain areas. This is because UCF contains too few samples for the generator and
classifiers to learn a comprehensive representation, which can be well supplemented using
OOD-entropy. Moreover, OOD-binary performs the worst across all three datasets, confirm-
ing our judgment in Section 3.2 that a binary classifier is too simplified to learn the complex
boundaries between seen and synthesized unseen samples whose precision is also limited by
the generator.

Lastly, although Calibrated Stacking outperforms OOD-entropy on ActivityNet, its per-
formance declines quickly when TPR (or FPR) is relatively low, as seen in Figure 3, where
the best HM often appears. Thus, OOD-entropy still holds the first place with the final best
HM of 14.38% (See Table 1).
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Table 3: Comparison of different classifier models

Classifiers (Seen & Unseen)
VGGSound UCF ActivityNet

SCacc UCacc HM SCacc UCacc HM SCacc UCacc HM

MLP & MLP 58.27 3.39 5.51 96.12 17.7 26.86 62.33 3.71 5.81
Embedding & Embedding 49.42 8.78 10.97 64.97 28.21 30.26 33.99 11.49 12.14

MLP & Embedding (ours) 58.27 8.78 11.16 96.12 28.21 37.89 62.33 11.49 14.38

4.4.2 Effect of Different Classifier Models

We conducted tests using different choices of seen and unseen classifiers: MLP or Em-
bedding methods, and the results are presented in Table 3. SCacc and UCacc represent the
accuracy of the seen and unseen classifiers, respectively. HM is obtained with the assistance
of OOD-entropy.

It can be concluded that MLP is the better choice for seen classes, while Embedding is
better for unseen classes. For example, on VGGSound, MLP achieves a SCacc of 58.27%
compared to Embedding’s 49.42%. However, the UCacc is only 3.39% compared to Embed-
ding’s 8.78%. The same trend applies to the other two datasets.

This difference stems from two main aspects. Firstly, our embedding model is origi-
nally designed for ZSL and may be too complex for familiar class classification with the
risk of overfitting, whereas a simple MLP can perform this task proficiently. Secondly, the
performance of UCacc of MLP is limited because, unlike Embedding, it can only learn from
synthesized unseen features due to its fixed output dimension, without including the more
crucial real seen features. However, there is considerable room for improvement in terms of
both SCacc and UCacc across all datasets. This deficiency could potentially be addressed by
employing more powerful specialized classification models in future works.

5 Conclusion

In this study, we introduce out-of-distribution (OOD) detection into the realm of Audio-
Visual Generalized Zero-Shot Learning (AV-GZSL) for the first time. We establish a com-
prehensive framework that forthcoming researches can adopt to achieve more structural,
organized and promising results. We first employ generative adversarial networks to synthe-
size unseen features, thereby enabling the training of an OOD detector alongside classifiers
for both seen and unseen classes. This detector determines whether a test feature belongs
to seen or unseen classes, followed by classification utilizing separate classifiers for each
feature type.

Our work demonstrates superiority in two key aspects. Firstly, we integrate both embedding-
based and generative-based methods, effectively leveraging the advantages of each approach.
Secondly, each component of our framework operates relatively independently and can be
substituted with more effective alternatives. This facilitates future exploration into structured
models and enhances overall performances.
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