GIRLANDA ET AL.: ENHANCING CVD PREDICTION THROUGH MULTI-MODAL SSL 1

Enhancing Cardiovascular Disease
Prediction through Multi-Modal
Self-Supervised Learning

Francesco Girlanda' " Department of Computer Science
fgirlanda@student.ethz.ch ETH Zirich

Olga Demler!-2 ZUrich, Switzerland
odemler@bwh.harvard.edu 2 Brigham and Women'’s Hospital

Bjoern Menze® Harvard Medical School
bjoern.menze@uzh.ch Boston, Massachusetts, USA

Neda Davoudi'34 3 Department of Quantitative Biomedicine
neda.davoudi@ai.ethz.ch University of Zlrich

ZUrich, Switzerland

4ETH Al Center
ETH Zurich
ZUrich, Switzerland

Abstract

Accurate prediction of cardiovascular diseases remains imperative for early diagno-
sis and intervention, necessitating robust and precise predictive models. Recently, there
has been a growing interest in multi-modal learning for uncovering novel insights not
available through uni-modal datasets alone. By combining cardiac magnetic resonance
images, electrocardiogram signals, and available medical information, our approach en-
ables the capture of holistic status about individuals’ cardiovascular health by leveraging
shared information across modalities. Integrating information from multiple modalities
and benefiting from self-supervised learning techniques, our model provides a compre-
hensive framework for enhancing cardiovascular disease prediction with limited anno-
tated datasets.

We employ a masked autoencoder to pre-train the electrocardiogram ECG encoder,
enabling it to extract relevant features from raw electrocardiogram data, and an image
encoder to extract relevant features from cardiac magnetic resonance images. Subse-
quently, we utilize a multi-modal contrastive learning objective to transfer knowledge
from expensive and complex modality, cardiac magnetic resonance image, to cheap and
simple modalities such as electrocardiograms and medical information. Finally, we fine-
tuned the pre-trained encoders on specific predictive tasks, such as myocardial infarction.
Our proposed method enhanced the image information by leveraging different available
modalities and outperformed the supervised approach by 7.6% in balanced accuracy.
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1 Appendix

1.1 Experimental setup
1.1.1 MAE

The specific ViT is equipped with 3 layers, and 6 projection heads that results in an em-
bedding of size 384. We used a patch size of (1,100). Mean Squared Error (MSE) and the
Normalized Correlation Coefficient (NCC) are used to evaluate the reconstruction perfor-
mance where Ay4 is a parameter that weights the two components of the loss:

Lyae = (1 —Ayae) Luse + Avae Lnce )

Signal augmentations include random cropping at a ratio of 0.5, Fourier transform sur-
rogate augmentation [2] with a phase noise magnitude of 0.1, Gaussian noise with a sigma
of 0.25, and a rescaling factor of 0.5. We trained the masked autoencoder using AdamW
optimizer [1] with weight decay of 0.15, batch size of 128, base learning rate of le-5, and
cosine annealing scheduler over 400 epochs with 10% of warm-up epochs and a value of
Apag = 0.1

1.1.2 Image Encoder

We used different augmentation techniques such as random horizontal flips with a probability
of 50%, random rotations up to 45 degrees in the image, adding color noise to brightness,
contrast, saturation, and a random resized crop of the image.

We trained the image encoder using the AdamW optimizer [1] with weight decay of 1e-4,
batch size of 512, base learning rate of 1e-4, and cosine annealing scheduler over 500 epochs
with 10 warm-up epochs and the temperature parameter 7 to 0.1.

1.1.3 Multimodal SSL

We trained the multimodal step using the AdamW optimizer [1] with weight decay of le-4,
batch size of 256, base learning rate of le-4, cosine annealing scheduler over 200 epochs
with 10% of warm-up epochs saving the checkpoint with the best loss. We set A to 0.5 to
balance the components of the loss function and the temperature parameter 7 to 0.1. We used
both the global pooling layer and the attention pooling to help with the next step. We found
similar results with both of them during the grid-search to find the right hyperparameters.

1.1.4 Finetune

We trained the fine-tune step using the AdamW optimizer [1] with weight decay of le-4,
batch size of 64, base learning rate of le-5. We tried both cosine annealing scheduler over
400 epochs with 5% of warm-up epochs, and a reduce LR on plateau scheduler, in the end
we saw that the cosine annealing was the most consistent. We saved the best model for both
schedulers according to the evaluation metric.

1.2 Extension to Stroke Disease

We tried our method for predicting another cardiovascular disease (stroke). Our approach
capitalizes on the available labeled stroke data to effectively leverage the learned represen-
tations’ discriminative power. We find that the predictive performance, while promising, is
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Table 1: Comparison of different diagnostic modalities and training strategy for stroke pre-
diction. Columns indicate which pre-train (pretr.)/training strategy is used. Best scores are in
BOLD font. The second best is underlined. Our approach outperforms all baseline models
with regard to AUC and balanced accuracy (Bal. Acc) metrics.

Bal.

SSL Modality MAE | Image ECG Tak'). CMRI AUC Ace

pretr. | pretr. | Train | Train | Train | [%] [%]

Tabular X X X 4 X 059 | 0.5

ECG X X v X X 0.57 | 0.52

ECG v X v X X 0.63 | 0.59

CMRI X X X X 4 0.62 | 0.60
ECG

(MMCL [3]) v v v X v 0.61 | 0.57

BCG+Tabular | 1l v | v | 0e7 | 062
(Ours)

not as robust as observed for myocardial infarction (MI). This discrepancy can be attributed
to the limited size of the stroke dataset, which comprises only about half the number of
instances compared to MI. By exploiting the informative labels associated with stroke in-
stances, our method surpasses alternative approaches, and supervised methods achieving
AUC improvement of 9.8% and 21.8% respectively (table 1 and 2). This highlights the ef-
ficacy of our model in harnessing labeled data efficiently and underscores the quality of the
trained embeddings, which proves useful even in scenarios with limited datasets, enhancing
predictive performance for stroke disease prediction.

Table 2: Comparison between self-supervised and supervised techniques. Best scores are in
BOLD font. The second best is underlined.

Modality ECG | Tabular | AUC [%] | Balanced Acc [%]
Supervised NN X v 0.55 0.52
Supervised NN v X 0.55 0.53
Supervised NN v v 0.55 0.53
Ours v v 0.67 0.62

1.3 Tabular Data

In table 3, we present a comprehensive overview of the tabular data utilized in our study. This
dataset encompasses a wide array of information, including demographics, comorbidities,
and lifestyle factors. To handle missing tabular data, we imputed the categorical features
with the most frequent ones and we used an iterative multivariate imputer for numerical
features as a function of existing features over multiple imputation rounds. The last section
also gives information about the cardiovascular diseases as labels that we want to predict.
This tabular data will then be paired together with ECG and CMRI data so, as mentioned in
Section 3, some tabular data could be missing.
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Table 3: Tabular features for 45257 individuals

Variable Units Descriptor Missing
Demographics
Age Years (SD) 64.6 (7.8) 0
Waist circumference cm (SD) 88.7 (12.8) 0
Height cm (SD) 170.1 (9.4) 0
Weight Kg (SD) 76.1 (15.2) 0
BMI Kg/m?> M (SD) 26.5 (4.4) 0
Sex Female (%) 23375 (51.7) | O
Comorbidities
Diabetes Positive (%) 2542 (5.6) 134
Health rating Good (%) 28532 (63.2) | 86
Vascular heart problem | Positive (%) 2672 (5.9) 14
Stroke of father Positive (%) 6345 (14) 0
Stroke of mother Positive (%) 6389 (14.1) 0
Stroke of siblings Positive (%) 1642 (3.6) 0
Breathe shortness Yes (%) 3099 (6.9) 645
Anxiety visit Yes (%) 13453 (29.9) | 256
Chest pain Yes (%) 4687 (10.4) 365
Stenosis Positive (%) 131 (0.3) 0
Hypertension Positive (%) 9798 (21.7) 0
Kidney disease Positive (%) 1221 (2.7) 0
Dementia Positive (%) 18 (0) 0
Thyrotoxicosis Positive (%) 611 (1.4) 0
Migraine Positive (%) 3344 (7.4) 0
Atrial fibrillation Positive (%) 1427 (3.2) 0
Heart failure Positive (%) 313 (0.7) 0
Embolism Positive (%) 411 (0.9) 0
Deep-vein thrombosis Years (SD) 720 (1.6) 35
Lifestyle
Smoke Smoker (%) 923 (2.0) 9
Alcohol intake Three or four times a week. (%) | 12715 (28.1) | 19
Diet salt Never/rarely (%) 25820 (57.1) | 9
TV Time hour/day (SD) 2.8 (1.6) 125
PC Time hour/day (SD) 1.5 (1.5) 142
Physical activity number of days/week (SD) 4.1 2.2) 1053
Sleep duration hours/day (SD) 7.2 (1.1) 128
Coffee intake cups/day (SD) 2.0 (1.9) 28
Vascular Disease
Stroke Positive (%) 738 (1.6) 0
Myocardial infarction Positive (%) 1399 (3.1) 0




References

[1] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

[2] Justus TC Schwabedal, John C Snyder, Ayse Cakmak, Shamim Nemati, and Gari D
Clifford. Addressing class imbalance in classification problems of noisy signals by using
fourier transform surrogates. arXiv preprint arXiv:1806.08675, 2018.

[3] Ozgiin Turgut, Philip Miiller, Paul Hager, Suprosanna Shit, Sophie Starck, Martin J
Menten, Eimo Martens, and Daniel Rueckert. Unlocking the diagnostic potential of ecg
through knowledge transfer from cardiac mri. arXiv preprint arXiv:2308.05764, 2023.



