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1 Details of the datasets

Table 1 gives an overview of the downstream datasets used for the evaluation of our method,
including the text prompt templates used to generate classifiers for CLIP.

Dataset # Train # Val. # Test Classes Text Prompt

CIFAR100 50K - 10K 100 “This is a photo of a { }”
CIFAR10 50K - 10K 10 “This is a photo of a { }”
Flowers102 4K 1.6K 2.5K 102 “This is a photo of a { }”
Food101 50K 20K 30.3K 101 “This is a photo of a { }”
EuroSAT 13.5K 5.4K 8.1K 10 “This is a photo of a { }”
SUN397 15.9K 4K 19.9K 397 “This is a photo of a { }”
UCF101 7.6K 1.9K 3.7K 101 “This is a photo of a { }”
SVHN 73.3K - 26K 10 “This is a photo of a { }”
OxfordPets 2.9K 736 3.6K 37 “This is a photo of a { }”
DTD 2.8K 1.1K 1.6K 47 “This is a photo of a { }”
Resisc45 18.9K 6.3K 6.3K 45 “This is a photo of a { }”

Table 1: Description of the datasets and the corresponding text prompt used for CLIP. The
data is adapted from Bahng et al. [1].
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Table/Figure Epochs Number of prompts TL Size PGN resolution

Table 1 1000 16 256 224×224
Table 2 500 8 64 64×64

Table 3* 1000 16 256 224×224
Table 4 500 16 256 224×224
Figure 2 1000 16 256 224×224
Figure 3 500 8 64 64×64
Figure 4 1000 16 256 224×224
Figure 5 1000 16 256 224×224

Table 2: Experimental settings for each of our tables and figures. *In Table 3 of the main
paper, the reported numbers for VP do not come from our own experimentation, hence our
settings do not apply.

2 Additional experimental settings
Training Details. In Table 2, we show the training details of the experiments in the main
paper. We train the PGN with a learning rate of 0.1 and apply a cosine decay learning
schedule ending at zero learning rate with a linear warmup for the first 50 epochs. We use
an SGD optimizer with 0.9 momentum. Except when specified, we use a batch size of 128
images on one Nvidia-1080TI GPU. Compared to the 1,000 epochs of concurrent work [1],
we train our network for 500 epochs by default in the motivation and ablation sections and
for 1,000 in the large-scale comparisons (Table 3 of the main paper).

Architectures. In Table 3, we show the details of ResNet10 architectures.

stage specification
output sizes
H ×W ×C

input data - 2242 ×3

conv1
7×7,16
stride 2,2 1122 ×16

pool1
3×3,16
stride 2,2 562 ×16

res2

[
3×3,16
3×3,16

]
×1 562 ×16

res3

[
3×3,32
3×3,32

]
×1 282 ×32

res4

[
3×3,64
3×3,64

]
×1 142 ×64

res5

[
3×3,128
3×3,128

]
×1 72 ×128

pool2
7×7,128
stride 1,1 12 ×128

Table 3: The structure of ResNet10, which is modified from ResNet18 to be more light-
weight. Modifications are marked in red. Note that the final classification layer is omitted.
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Feature similarities computation. For Figure 3 in the main paper, we embed the valida-
tion set of CIFAR-100 using the three visual encoders of PGN (only), CLIP, and PGN+CLIP.
For this we cluster the features into 100 clusters using k-means. After this, the representa-
tions can be easily compared with each other using the normalised mutual information score.

3 Qualitative analysis
From Table 1 in the paper, we observed that the CLIP zero-shot and the PGN backbone
model’s performance on their own are low with 63-64%. However, when combined, we
reach performance increases of +15% yielding up to 79% on CIFAR100. In this section, we
analyse how the simple mechanism behind PGN is allowing the combined model to achieve
superior performances.

What do the individual Token Library items stand for? To answer this question, we
pass the validation sets through the trained PGN model and pick individual tokens that we
wish to visualize. We then pick the top four input samples that have the highest softmax
values for the selected item. The result is shown in Figure 1 for CIFAR100. We find that
while some tokens are fairly category specific, such as those for a tree or an apple, some
cover much broader categories such as lighting conditions or even geometric structures. Note
however that the PGN is not doing the heavy-lifting in terms of classifying the images by
itself, as its output is not well-aligned with the ground-truth, as demonstrated in Figure 3 of
the main paper. It rather supplies the frozen transformer model with orthogonal information
that helps the task. More examples are provided at the end of this document.

Figure 1: Token Library items and attention values. On the left, we show 4 CIFAR100
samples that maximally activate one of three selected items in the token library. Each row
in the grid corresponds to one token library item. On the right, we show the individual
attention values from the CLS token to the supplied prompts of PGN and IIP. We find that
while PGN has an overall lower average attention, the input-dependency successfully yields
a wider distribution in adapting the original model.

How is the computation changed by PGN prompts? Next, we analyse the effect of the
PGN prompts to the internal computations of the frozen vision transformer. In Figure 1, we
visualize the CLS token’s attention map at the final layer of the transformer with or without
our PGN. Despite showing the effect of the prompts on the last layer’s attention map, we
still find a strong effect of the PGN’s additionally supplied prompts. While the effect is not
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interpretable for low-resolution datasets such as CIFAR, for Pets and Resisc we observe an
increased focus on the foreground. We also show the attention values of the CLS to the 16
supplied prompts below the PGN-CLIP attention maps. A strong variance between images
is seen, demonstrating that the method learns and leverages the input-dependency of the
prompts that are supplied to the frozen model. More examples are provided at the end of this
document.

4 Multi-dataset PGN
We retain the same setting as in our large-scale experiments and train with batches that
contain samples from the four datasets in Table 4. The model is thus forced to allocate the
token library items in a manner that best supports this task, reducing the overall number of
additionally adapted parameters by 75%. From Table 4, we find that despite this reduction
in parameters, the overall performance only decreases by a small amount of 3.7%, despite
the fact that the classification problem is now 193-way and thus much more difficult.

Method EurSAT UCF Pets RESISC Avg. ∆ Σ params

CLIP+TP (I) 40.0 59.9 85.9 42.4 57.1
-7.7%

-
CLIP+TP (J) 4.4 59.7 85.8 47.7 49.4 -

+ PGN (I) 98.0 77.6 91.5 92.1 89.8
-3.7%

5M
+ PGN (J) 96.9 72.7 89.0 85.7 86.1 1M

Table 4: Training multi-dataset PGN. Adapting and inferring jointly (J) over multiple
datasets compared to individual (I), per-dataset training and evaluation. Giving more text
prompts (TP) for joint inference leads to a strong decrease in accuracy, yet, joint training of
the PGN retains a strong performance while reducing the number parameters by 75%.

5 Details of the feature similarity analysis
In the NMI analysis in Figure 3 and Sec. 4.1 of the main paper, we measure the pairwise
alignment between the outputs of the visual encoders we use and the ground truth. These
are: the frozen CLIP model’s visual encoder that outputs CLS embedding, the trained PGN
model that outputs prompts (the ĥV in Eqn. 4), and the combined CLIP+PGN model which
uses PGN prompts to modify CLIP’s visual encoder’s outputs (that outputs CLS embedding
after CLIP). For this, we apply k-means clustering to the set of embeddings generated by
each encoder individually, setting k equal to the number of ground-truth classes. For our
experiment, we use the full CIFAR100 test split. This yields a set of 3 pseudo labelings
of the dataset. After combination with the ground-truth labels, we can make 6 pairwise
comparisons and calculate the normalised mutual information, which measures a generalized
correlation between labelings. The results are shown in Table 5.

6 Large-scale comparisons
In Table 3 in the main paper, the results for linear finetuning are adopted from the original
CLIP paper [5], whereas the results for full finetuning are taken from VP [1].
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NMI GT PGN CLIP PGN+CLIP
GT 100 29.5 58.1 70.1

PGN 100 27.5 33.8
CLIP 100 61.2

PGN+CLIP 100

Table 5: Normalized Mutual Information (NMI) score in %.

7 Additional experiments
Comparison between linear and non-linear layer. In Table 6 we evaluate replacing the
final linear layer of gθ with a MLP with 1 hidden layer, which allows for a nonlinear mapping
between image features and the logits that give rise to the combination coefficients in Eqn. 3.
No significant performance gain is observed.

Type CIFAR100 SUN397

Linear 77.9 70.5
MLP 78.2 70.4

Table 6: Feature projection layer type.

Unfreezing the classification layer. So far, we have utilized CLIP’s text prompts (TP) to
generate the fixed weights of a linear classifier. In Table 7, we compare this approach to a
trainable classifier, which takes the TP weights as a starting point.

Cls. CIFAR100 SUN397

TP 79.3 70.9
+ SGD 79.3 70.3

Table 7: Training a linear layer in addition to PGN.

Method ImageNet A R V2 Sketch

PGN 66.0 22.8 62.5 56.7 36.5
LP 67.0 10.6 38.1 1.0 36.1

Table 8: Evaluation accuracies on 4 robustness benchmarks. We compare adaptation with
a PGN to linear finetuning (LP). We observe that PGN retains much higher scores on these
robustness evaluations.

Experiments on robustness. We evaluate the robustness of PGNs by training for 100
epochs onf ImageNet [2] and evaluating on four ImageNet variations (ImageNet-A [3],
ImageNet-R [4], Imagenet-V2 [6] and Imagenet-Sketch [7]). For these experiments, we
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Figure 2: Modification of CLS attention maps. We show the attention map of the CLS token for
various inputs (left) with the spatial patches for both the original CLIP model’s (middle) and the PGN-
modified CLIP’s final layer (right). Below the PGN attention map, we show the attention to PGN’s
additional prompts. We observe a clear modification of the attention map as well as the diverse activa-
tion patterns to the supplied tokens.

Figure 3: Token Library example items. We show 4 samples that maximally activate one of three
selected items in the token library for three datasets. Each row in the grid corresponds to one token
library item. We find that the items can stand for whole objects such as apples and trees for CIFAR100,
and also for lower level features such as light warmth or net structures as in UCF101.

use identical PGN settings as in Table 3 in the paper. The results are shown in Table 8 and
compared to the case of linear finetuning on the same, frozen CLIP backbone (ViT-B/32).
We see that the PGN outperforms linear finetuning on all robustness benchmark, despite
being comparable in terms of its performance on the upstream dataset.
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