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Abstract

Medical image registration is a critical process that aligns various patient scans, fa-
cilitating tasks like diagnosis, surgical planning, and tracking. Traditional optimization-
based methods are slow, prompting the use of Deep Learning (DL) techniques, such as
VoxelMorph and Transformer-based strategies, for faster results. However, these DL
methods often impose significant resource demands. In response to these challenges,
we present NCA-Morph, an innovative approach that seamlessly blends DL with a bio-
inspired communication and networking approach, enabled by Neural Cellular Automata
(NCAs). NCA-Morph not only harnesses the power of DL for efficient image registration
but also builds a network of local communications between cells and respective voxels
over time, mimicking the interaction observed in living systems. In our extensive ex-
periments, we subject NCA-Morph to evaluations across three distinct 3D registration
tasks, encompassing Brain, Prostate and Hippocampus images from both healthy and
diseased patients. The results showcase NCA-Morph’s ability to achieve state-of-the-art
performance. Notably, NCA-Morph distinguishes itself as a lightweight architecture with
significantly fewer parameters; 60% and 99.7% less than VoxelMorph and TransMorph.
This characteristic positions NCA-Morph as an ideal solution for resource-constrained
medical applications, such as primary care settings and operating rooms.

1 Introduction
In healthcare, the process of image registration is a core technical problem to combine dif-
ferent images of one (or more) patients [16, 46] into a common spatio-temporal coordinate
system [7]. Successful registration enables a wide range of applications from diagnosis to
surgical planning and tracking [13, 18, 31, 43]. The registration process infers the defor-
mation of a medical image by using a displacement vector field [36] or deformation field
[33]. Traditional – non-learning – registration is a time-consuming process that requires op-
timizing the deformation field based on a set of parameters [2, 3, 42]. The introduction of
Deep Learning (DL) methods like VoxelMorph- and Transformer-based strategies [4, 9, 37]
allow learning the deformation field end-to-end without requiring a ground truth warp field.
Though DL makes inference faster, the computational requirement is ever increasing. In
scenarios like cluttered operating rooms or primary care disease progression analysis, where
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deploying large computers is often impractical, the need for low-resource inference becomes
crucial for democratizing medical Artificial Intelligence [14].

(a) Deformable models (b) Traditional DL (c) NCA-Morph

Figure 1: (a) Traditional optimization techniques like SyN focus on local displacements of
voxels while optimizing a set of parameters during inference [5, 42]. (b) Traditional DL
techniques leverage global information while estimating a one-shot deformation field during
inference based on displacement rules learned during training [4, 10, 21]. (c) NCA-Morph
learns local displacement rules in a DL-fashion while regularizing the deformation field
during inference based on local interactions and learned rules.

In this paper, we introduce a bio-inspired paradigm for image registration as an emer-
gent phenomenon, drawing inspiration from the dynamics of cellular communication and
collective intelligence, Figure 1. Building on this, we explore the recent advances in Neu-
ral Cellular Automata (NCA) for lightweight and adaptive medical applications. NCA is an
emerging field with promise for various applications where a common local rule is uniformly
applied to all cells in an image or 3D volume. The particular appeal of NCAs lies in their
ability to communicate solely with their nearby neighbors. A complex goal can be reached by
repeating this same rule multiple times. The one-cell architecture makes NCAs lightweight
with only around 13k parameters. To date, most publications in this area have been limited
to toy examples, such as growing an image from a single cell [35], self-classifying robots
[44], and segmentation [39] on image sizes of 64x64. This is partially due to the substantial
video random access memory (VRAM) requirements during training and the more difficult
convergence in general. However, recent developments like M3D-NCA [20] have expanded
the potential use cases.

Given the success of NCAs in segmenting medical images [19], the question naturally
arises as to whether they can be applied to another important area of medical image analy-
sis: registration. However, this problem poses a greater challenge since the goal of image
registration is generally to match two 3D volumes. Our NCA-based approach stands apart,
as it does not involve variational minimization, elastic deformations or convolutional net-
works and spatial transformations like traditional and DL approaches do. It offers a novel,
efficient pathway for achieving high-precision registration by leveraging the self-organizing
properties of NCAs.

NCAs are initially conceived as a solitary active cell that can be seen as mimicking a sin-
gle voxel taking the initiative to build a network of communication between its neighboring
cells. These connections facilitate communication and collaboration among cells to collec-
tively influence their transformations, i.e. a 3D deformation field for optimal registration.
During the training of the NCA, the initial network of connections between the cells evolves
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and matures into a resilient and complex communication network among the NCA cells. Re-
markably, despite the growing complexity of the network, each individual cell adheres to the
same rule, mirroring the uniformity of action within a developing organism.

We demonstrate how this bio-inspired approach is (1) parameter efficient, (2) holds the
potential to significantly enhance the precision and efficiency of medical image registra-
tion while (3) being light-weight and able to run on a Raspberry Pi.

NCA-Morph establishes the basis for utilizing NCA architectures in the context of medi-
cal image registration. The contributions of this work are two-fold: (1) NCA-Morph success-
fully introduces the NCAs in 3D medical image registration by learning local displacement
rules. (2) We perform an extensive analysis of the NCA architecture and its components on
three different organs (Brains, Prostate and Hippocampus) in the form of inter-subject se-
tups to get a proper understanding of their impact on medical image registration. The results
show that our method achieves accuracy comparable to the state-of-the-art. With the help
of NCA-Morph, registration can be completed in a few seconds using a GPU while being a
lightweight architecture with 60% and 99.7% less parameters compared to VoxelMorph and
TransMorph respectively.

2 Related Work
Traditional medical image registration: There are several traditional 3D medical image
registration techniques based on basic – non-learning – assumptions like the concept of at-
traction using a deformable model like Maxwell’s demons [42]. Another strategy uses large
deformation metric mappings via geodesic flows [5], which is based on variational mini-
mization on vector fields using Euler-Lagrange equations. Topology-preserving diffeomor-
phic transformations have demonstrated success in diverse studies related to computational
anatomy. Approaches like elastic matching [3] or symmetric diffeomorphic registration [2]
are based on local elastic deformations in combination with methods to maximize the cross-
correlation for diffeomorphic cases in the space of topology preserving maps. Different
work uses a Levenberg–Marquardt strategy and a constant Eulerian velocity framework [1]
to perform registration. One of the well-known traditional registration strategies is standard
symmetric normalization, SyN and SyNCC using Normalized Cross Correlation [2]. How-
ever, traditional methods like SyNCC are known for their slow processing speed.

(Deep-)Learning-based medical image registration: Recent research focuses on DL-
based techniques for medical image registration. For instance, there are methods that are
trained end-to-end using segmentations as their ground truth or optical flows like warp fields
[22, 38, 41, 45]. Being dependent on segmentations or ground truth warp fields for train-
ing is a crucial bottleneck as to why another group of methods has emerged that focuses on
unsupervised medical image registration.

The prime example of unsupervised medical image registration is the VoxelMorph frame-
work [4]. VoxelMorph and several widely adopted methods [8, 12, 25, 34] rely on Convo-
lutional Neural Network (CNN) structures along with a spatial transformation function [17].
This function is employed to deform images by applying an estimated deformation field
denoted as φ .

Since the publication of VoxelMorph, advanced and more complex methods based on this
framework were published. Notably, given the current success of Transformers in the field of
medical imaging, recent publications have explored image registration using Transformer- or
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Attention-based networks [9, 10, 11, 26, 37, 40]. Additionally, techniques like CycleMorph
incorporate cycle loss and local cross-correlation during their training process [21].

In contrast, our NCA-Morph introduces a bio-inspired method for image registration,
following the adaptability observed in living organisms. NCA-Morph enhances the precision
and adaptability of medical image alignment by guiding the gradual evolution of the cells
in the NCA network. This approach sets itself apart by achieving superior performance
with notable parameter efficiency, offering a lightweight solution for precise medical image
registration.

3 Methodology

To our knowledge, no work to date addresses the problem of 3D registration using NCAs.
Let O ⊂ Ω be a dataset O, while Ω ⊂ R3 is a 3D spatial domain. O consists of m pairs{(
Ik
img, I

k
seg

)}
k≤|O|

, where Iimg is a 3D scan and Iseg the corresponding segmentation mask.

For medical image registration, patient pairs are used, whereas one image pair k is referenced
as fixed (F) and the other one as moving (M) –

{(
Fk

img,F
k
seg

)
|
(

Mk
img,M

k
seg

)}
. Registration

is a Transformation T which maps an image pair from the moving, i.e. source domain ΩM
into the target domain ΩF of the fixed image pair using a parameteric representation φ of the
deformation field: Tφ

(
Mk

img,M
k
seg

)
∼= φ ◦

[(
Mk

img,M
k
seg

)
∈ ΩM

]
=
(

Mk
φ(img),M

k
φ(seg)

)
∈ ΩF .

Neural Cellular Automata for registration: Different NCA variations are introduced
throughout this work based on their settings using the NCA-Morphsteps

kernel notation. When
designing NCA-Morph for registration, we formulate a localized update rule represented as
gθ (F,M) = u. This rule acts to incrementally adjust the cell state of each voxel, progressively
aligning it with a deformation field φ . Through a series of iterations we gradually approach
the desired deformation field by applying this rule locally to every voxel within a 3D image.

We define φ as the accumulated outcome of applying the update function g over a series
of time steps. This can be expressed as φ = g(xt=n)⊙ g(xt=n−1)⊙ ·· ·⊙ g(xt=0), where ⊙
represents a simple concatenation, t are the time steps and x represents the combined 3D
volume of the moving image and the fixed image: x0 := Fk

img ⊙Mk
img. The objective is to

identify anatomically similar regions in these images.
In Figure 2, we give an overview of our NCA-Morph architecture and the underlying

inference setup. We initiate the model with the input images Mk
img and Fk

img. At each time
step t, we execute the function g, which is parameterized by θ . This function guides up-
dates for each cell in the input images, gradually refining the alignment, i.e. propagation of
the deformation field over time following our bio-inspired communication approach among
cells. We train these parameters by applying φ alongside a spatial transformation func-
tion, resulting in Mk

φ(img). This transformation enables the computation of the similarity loss

Lsim

(
Fk

img,M
k
φ(img)

)
between the fixed and moved images, facilitating the alignment process.

Additionally, we incorporate a smoothing technique Lsmooth(φ) for the deformation field,
as proposed in VoxelMorph, enforcing a spatially smooth deformation. Since we possess
segmentation masks, we include a segmentation loss term Lseg

(
Fk

seg,M
k
φ(seg)

)
, measuring

the alignment between the fixed and moved segmentation masks.
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Figure 2: NCA-Morph architecture for registration: The input is a concatenation ⊙ of the
fixed and moving image accompanied by 30 empty channels. Upon reducing the image size
by a quarter, the initial NCA forecasts the overall flow of cells. Subsequently, this rough
flow is combined with the detailed images, and a second NCA completes the deformation.
While the second NCA solely observes patches during training, it operates at full resolution
during inference. The resulting deformation field can be applied to warp both the moving
image and its segmentation.

Model architecture: M3D-NCA [19], initially designed for medical segmentation, presents
limitations when applied to registration tasks. This is because registration requires the align-
ment of two volumes, which demands a different architecture to handle the increased com-
plexity. Our introduced NCA-Morph uses an n-level approach, where NCAs are running
on different scales of the image, starting from a coarse to a fine worldview, increasing the
global information. This global information is then upscaled to the next image scale and
can thus be combined with high-resolution image information. NCA-Morph solves the high
VRAM requirements by using patches on the high-resolution layers of the model. Due to the
one-cell architecture, NCAs can be trained on patches and inferred on the full-scale image.

The update rule on each level g is represented by an NCA, which uses one 3D convolu-
tion with a kernel size of k = 3 as its input, describing a simplification of all neighborhood
information into a vector vn. We concatenate this information (⊙) with the cell’s current
state c, which leaves us with a state vector of v = vn ⊙ c. In the next step, v is updated by
two fully connected hidden layers, where the first one maps v onto a vector of size h = 128,
the Rectified Linear Unit (ReLU) activation function is applied and the second layer maps it
back to the input channel size ic, resulting in a vector vi. We then update c by adding vi thus
making ct+1 = ct + vi.
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4 Datasets
Open Access Series of Imaging Studies (OASIS): The OASIS-1 dataset [32] is a cross-
sectional collection of 416 subjects, aged from 18 to 96. For each subject, up to four individ-
ual T1-weighted MRI scans were obtained during a single session. The dataset was obtained
within the Learn2Reg Challenge [15]. For this work, we randomly sampled 364 inter-patient
image pairs from the training distribution and another 50 inter-patient pairs from the testing
distribution.

Prostate task: Our prostate registration focuses on two distinct datasets: the I2CVB [24]
and PROMISE12 dataset [27]. These datasets are used in their original form as part of the
Multi-site Dataset for Prostate MRI Segmentation Challenge [28, 29, 30]. They consist of
T2-weighted MRIs. For our registration preparation, we randomly selected 240 image pairs
between different patients for training and an additional 60 pairs for evaluation.

Hippocampus task: The registration task for the Hippocampus involves two datasets:
the Harmonized Hippocampal Protocol dataset [6] and the Dryad dataset [23]. The Hip-
pocampus task comprises T1-weighted MRIs of elderly healthy individuals and patients with
Alzheimer’s disease. We follow the same registration preparation as for prostate (240-60).

5 Results
We conduct a comprehensive analysis on computation vs. performance of our NCA-Morph
variations in comparison to traditional methods like SyN [2] and state-of-the-art registration
techniques, such as VoxelMorph [4], TransMorph [10], ViTVNet [9], and NICE-Trans [34].

5.1 Computation vs. Performance

To get a proper comparison over the computational burden of our proposed NCA-Morph
variations and state-of-the-art (SOTA) methods, the Dice performance distribution across
the number of model parameters is shown in Figure 3 and Table 1.

105 106 107
Number of parameters

Multiples of NCA-Morph

80

1 1.87 2.51 43.68 241.58 358.01
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NICE-Trans
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Figure 3: NCA-Morph compared to VoxelMorph, TransMorph, ViTVNet and NICE-Trans
in terms of the number of parameters and Dice performance based on the OASIS registration
task. NCA-Morph uses 60% and 99.7% fewer parameters than VoxelMorph and Trans-
Morph.
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Figure 3 shows that the NCA-Morph has a significant advantage in terms of the number
of parameters. Our best NCA-Morph achieves a superior Dice performance than the SOTA
VoxelMorph while using 60% less parameters.

Table 1 gives a proper overview of allocated resources during training and inference.
Jacobian determinants are used as a measure for deformation fields as negative determinants
indicate that the transformation causes local volume compression or folding. The runtime
indicates the number of seconds to train a network for a single epoch along with the model
size in megabyte (MB). The number of parameters describes the amount of trainable model
parameters, whereas the inference time to register a single 3D volume on a GPU is indicated
as "GPU sec". Although our NCA-Morph takes 3 seconds more for a single registration, it
has a significantly lower number of parameters compared to VoxelMorph and TransMorph,
while achieving still similar performances.

Anatomy Method SSIM ↑
∣∣Jφ

∣∣≤ 0 ↓ Dice ↑ [%] Runtime ↓ [sec] Model size ↓ [MB] Nr. parameters ↓ GPU sec ↓

B
ra

in
(O

A
SI

S)

SyN 74.69 (1.26) −− 68.58 (1.56) – – – 11.38⋊

SyNCC 78.93 (1.33) −− 72.00 (1.53) – – – 448⋊

VoxelMorph 82.84 (1.36) 254217 (20553) 90.82 (1.03) 722 1.30 327,331 7.79
TransMorphtiny 81.20 (1.53) 377100 (32541) 90.49 (1.29) 361 4.60 244,527 6.62
TransMorphdefault 86.21 (1.26) 283837 (20883) 93.80 (0.82) 445 190.70 46,771,251 10.89
ViTVNet 84.76 (1.38) 310839 (25593) 93.25 (0.88) 551 126.3 31,560,079 8.98
NICE-Trans 88.31 (1.29) 305220 (29010) 94.95 (0.62) 654 24.90 5,706,508 6.59
NCA5

3×3 81.00 (1.70) 291620 (21842) 90.99 (1.20) 560 0.52 129,504 11.51
NCA∗5

3×3 65.45 (2.36) 323441 (25429) 90.67 (1.22) 567 0.52 130,641 9.90
NCA10

7×7 82.70 (1.66) 257241 (24826) 92.14 (1.09) 630 0.52 129,504 16.79
NCA∗10

7×7 82.05 (1.57) 336983 (23095) 91.29 (1.18) 636 0.53 130,641 12.92

Pr
os

ta
te

SyN 95.50 (1.09) −− 49.32 (21.02) – – – 7.22⋊

SyNCC 95.59 (1.15) −− 51.88 (22.13) – – – 420⋊

VoxelMorph⊛ 95.24 (1.31) 0.00 (0.00) 53.39 (16.11) 282 1.30 327,331 7.44
TransMorphtiny 95.24 (1.31) 0.00 (0.00) 53.38 (16.16) 294 4.60 244,527 6.49
TransMorphdefault 95.23 (1.22) 96881 (94986) 51.78 (15.82) 367 190.70 46,771,251 6.68
ViTVNet 94.98 (1.04) 111511 (72308) 27.61 (19.76) 417 126.30 31,560,079 6.34
NICE-Trans⊖ 96.06 (0.91) 2343699 (26870) 0.00 (0.00) 520 24.90 5,706,508 7.44
NCA5

3×3 95.19 (1.31) 53195 (7134) 53.17 (15.80) 428 0.52 129,504 9.43
NCA∗5

3×3 95.12 (1.13) 107357 (19479) 35.53 (18.44) 430 0.53 130,641 8.09
NCA10

7×7 94.95 (1.30) 333012 (29795) 46.18 (15.54) 477 0.52 129,504 13.30
NCA∗10

7×7 95.13 (1.10) 83298 (14387) 43.70 (15.46) 479 0.53 130,641 10.25

H
ip

po
ca

m
pu

s

SyN 83.49 (4.19) −− 35.26 (24.61) – – – 0.35⋊

SyNCC 83.24 (4.91) −− 32.03 (27.12) – – – 14.21⋊

VoxelMorph⊛ 80.76 (3.46) 6.36 (48.9) 32.4 (22.75) 33 1.30 327,331 0.68
TransMorphtiny 79.67 (4.47) 49379 (8187) 33.64 (25.97) 62 4.60 244,527 0.56
TransMorphdefault 84.70 (4.52) 58104 (9120) 48.28 (33.41) 69 190.70 46,771,251 1.08
ViTVNet 82.23 (3.83) 29941 (7983) 33.64 (26.71) 66 126.30 31,560,079 0.93
NICE-Trans⊚ 67.82 (6.08) 104669 (5135) 4.80 (5.09) 96 24.90 5,706,508 1.33
NCA5

3×3 82.08 (3.92) 29393 (8424) 36.05 (27.88) 45 0.52 129,504 0.53
NCA∗5

3×3 80.77 (4.25) 44966 (11952) 35.46 (27.34) 42 0.53 130,641 0.57
NCA10

7×7 82.85 (3.81) 28982 (8357) 37.77 (28.54) 57 0.52 129,504 0.46
NCA∗10

7×7 80.80 (4.34) 51756 (14247) 33.18 (27.39) 55 0.53 130,641 0.46

Table 1: Computation vs. Performance: Structural Similarity Index Measure (SSIM), neg-
ative Jacobian and Dice score for every trained DL model with runtime per epoch, model
size, number of parameters and inference time on a GPU. For traditional methods, inference
time on CPU is provided and marked with ⋊. NCA∗ generates the deformation field with
an additional CNN layer. Due to non-convergence: ⊛ is trained for 150 epochs, ⊚ for 100
epochs and ⊖ performance dropped to 0% after few epochs of training.

The outcomes and resource allocations for our most successful NCA-Morph ablation –
7x7 kernel, 10 steps, 32 channels, 128 hidden size and directly extracting the flow from
the NCA-Morph – in addition to VoxelMorph, two TransMorph ablations, the ViTVNet and
NICE-Trans distinctly illustrate that NCA-Morph models use significantly fewer parameters
than all other models. Compared to the default TransMorph model, our NCA-Morph uses
99.7% less parameters while achieving nearly identical Dice performance.
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5.2 NCA-Morph ablation studies

We conducted a series of ablation experiments to investigate the impact of various hyper-
parameters on the performance of our NCA-Morph. Specifically, we explored the effects of
altering the kernel size, the number of steps, channel size, and hidden size. Our objective was
to understand which of these alterations lead to substantial changes in model performance to
correctly determine a well suited setup for registration, Table 2.

Method SSIM ↑
∣∣Jφ

∣∣≤ 0 ↓ Dice ↑ [%]
Kernel size ablation (10 steps, 16 channels, 64 hidden size)

NCA10
3×3 78.82 (1.44) 456804 (22491) 88.99 (1.44)

NCA10
5×5 78.83 (1.48) 460264 (22363) 88.95 (1.41)

NCA10
7×7 78.93 (1.53) 445223 (23424) 88.91 (1.43)

NCA10
9×9 78.88 (1.49) 444250 (22278) 88.96 (1.43)

Step size ablation (3×3 kernel, 16 channels, 64 hidden size)
NCA5

3×3 79.14(1.49) 360049 (27372) 89.13 (1.27)
NCA10

3×3 78.82 (1.44) 456804 (22491) 88.99 (1.44)
NCA30

3×3 78.47 (1.46) 445687 (20268) 88.96 (1.42)
NCA50

3×3 78.45 (1.47) 436240 (20486) 88.59 (1.53)
Channel and hidden size ablation (3×3 kernel, 5 steps)

NCA5
3×3(16,64) 79.14(1.49) 360049 (27372) 89.13 (1.27)

NCA5
3×3(16,128) 78.64 (1.41) 439126 (24152) 88.22 (1.40)

NCA5
3×3(32,64) 80.68 (1.64) 315900 (30167) 90.57 (1.21)

NCA5
3×3(32,128) 81.00 (1.70) 291620 (21842) 90.99 (1.20)

Table 2: Quantitative comparison of kernel size, number of steps, channel size and hidden
dimensions based on SSIM, negative Jacobian determinants and Dice.

The results of our ablation studies shows that hyperparameter variations did not yield a
significant effect on the model’s overall performance. The modifications made to the NCA-
Morph kernel size, channel size, and hidden size seemed to have an impact that could be
regarded as random, given the absence of a significant difference. It is important to mention,
that by increasing the number of steps, the perceptive range is increased leading to worse
registration performance as shown in Table 2. With this insight in mind, we proceeded to
perform our experiments with the NCA-Morph using 3x3 kernel with 5 steps and a 7x7
kernel with 10 steps, both having 32 channels and a hidden size of 128.

5.3 NCA-Morph produces stable flows

To assess the variance level of our NCA-Morph, we conducted ten consecutive inference
registrations on three random images from the OASIS registration task.

We computed the standard deviation of the ten resulting flow fields, offering a measure of
variability in the spatial transformations generated during the registration process. Addition-
ally, we assessed the standard deviation of the corresponding segmentation masks, shedding
light on the uncertainty associated with our model’s performance. Figure 4 clearly indicates
the reliability and consistency of our NCA-Morph in handling registration tasks.
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Figure 4: Stability assessment over 10 predictions on different test samples from the OASIS
registration task. Left: variance for the flow, right: variance for the corresponding segmen-
tation masks – using NCA-Morph10

7×7.

5.4 NCA-Morph runs on a Raspberry Pi
Incorporating DL models into resource-limited platforms like the Raspberry Pi (RPi) has
emerged as an important endeavor. We showcase the unique benefits of our lightweight
NCA-Morph architecture by deploying it on a Raspberry Pi 4, Model B (2 GB RAM), and
illustrate its potential for edge computing applications. We conducted experiments to evalu-
ate the performance and efficiency of our architecture in this constrained environment.
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Figure 5: Inference times of our NCA-Morph10
7×7 architecture across different input sizes on

a Raspberry Pi.

NCA-Morph’s efficiency in resource utilization sets it apart as a particularly well-suited
DL model for edge computing. Engineered with a focus on minimal memory and compu-
tational requirements, it seamlessly adapts to the RPi’s constrained hardware of 2GB. This
efficiency ensures not only smooth operation but also the potential for additional software
components, making NCA-Morph a valuable addition to the Raspberry Pi ecosystem. With
its focus on resource efficiency, real-time capabilities, and versatility, our NCA-Morph is
positioned to contribute to advancements in various domains, while ensuring accessibility to
a wide range of users.

6 Conclusion
We introduce NCA-Morph, a robust medical image registration technique that uses an NCA
architecture for registration instead of U-Net-based strategies. We evaluate our approach
across three different registration tasks and show that it achieves state-of-the-art performance
while being lightweight and using a significantly lower amount of parameters. Based on our
bio-inspired approach, NCA-Morph succesfully builds a complex network between its cells
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while learning local displacement rules in a DL fashion. Future work should explore the
NCA-related limitations of VRAM and training times to further improve the applicability of
our method.

7 Reproducability
The used dataset is publicly available under the corresponding citation. The code with all im-
plementations is made publicly available under https://github.com/MECLabTUDA/
NCA-Morph.
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