
SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI 1

SOFI: Multi-Scale Deformable Transformer
for Camera Calibration with Enhanced Line
Queries
Sebastian Janampa Student
sebasjr1966@unm.edu

Marios Pattichis
pattichi@unm.edu

Department of Electrical & Computer
Engineering
The University of New Mexico
New Mexico, USA

Abstract

Camera calibration consists of estimating camera parameters such as the zenith van-
ishing point and horizon line. Estimating the camera parameters allows other tasks like
3D rendering, artificial reality effects, and object insertion in an image. Transformer-
based models have provided promising results; however, they lack cross-scale inter-
action. In this work, we introduce multi-Scale defOrmable transFormer for camera
calibratIon with enhanced line queries, SOFI. SOFI improves the line queries used in
CTRL-C and MSCC by using both line content and line geometric features. Moreover,
SOFI’s line queries allow transformer models to adopt the multi-scale deformable atten-
tion mechanism to promote cross-scale interaction between the feature maps produced
by the backbone. SOFI outperforms existing methods on the Google Street View, Hori-
zon Line in the Wild, and Holicity datasets while keeping a competitive inference speed.
Code is available at: https://github.com/SebastianJanampa/SOFI

1 Introduction
Camera calibration is a fundamental task in computer vision, which enables higher-level ap-
plications such as 3D scene renderization, image rectification, and metrology. Estimating
camera (intrinsic and extrinsic) parameters from a single-view image involves the develop-
ment of methods that process the image’s perspective distortions. Here, note that an example
of perspective distortion is the intersection of lines on an image plane despite being parallel
in the real world.

Traditional methods involve using known calibration patterns (e.g., chessboard images).
These methods include taking multiple pictures of the 3D environment with the calibration
pattern at different locations and angles. Then, corners are extracted from each image and
matched using a matching technique such as Random Sample Consensus (RANSAC) [5] to
compute the camera parameters. Traditional methods perform well, but require processing
images of calibrated patterns and do not allow automated calibration from a single image.

Alternatively, camera calibration can be performed based on the relationship between
camera parameters and geometric cues, such as vanishing points and horizon lines. We sum-
marize these approaches based on three main steps: line segment detection, line clustering,

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Fischler and Bolles} 1981

https://github.com/SebastianJanampa/SOFI

2 SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI

and vanishing point estimation from each cluster. Unfortunately, such methods depend on
man-made scenes (e.g., buildings). Their performance drops significantly on natural images
or images taken in the wild.

Deep learning methods rely on both geometric cues and image features. In earlier re-
search, Deepfocal [23] proposed a deep learning model to estimate the focal length of a
camera based on any image taken "in the wild". Workman et al. [24] proposed a convo-
lutional neural network (CNN) to predict the horizon line. Deepcalib [2] proposed a CCN
model to predict the intrinsic (horizon line, focal length, and distortion) camera parameters.
Hold-Geoffroy et al. proposed a model that estimates both intrinsic and extrinsic at the same
time. Authors in [10, 28] use geometric priors (lines) to improve estimation. Overall, deep
learning methods based on convolutional layers can only capture dependencies over the sup-
port of the convolution kernels. Here, we note that camera calibration requires extracting
information from different regions of the image that are not necessarily near each other.

More recently, Camera Calibration Transformer with Line-Classification (CTRL-C) [11]
and Multi-Scale Camera Calibration (MSCC) [17] introduced transformer-based [3, 20]
models that use the attention mechanism to extract long-term dependencies over the input
images. MSCC used a coarse-to-fine technique that extended CTRL-C output queries for
coarse estimation. Then, it used a second transformer model fed by a larger feature map
with twice the spatial resolution of the first map. However, the use of a larger feature map
increases inference time. At the same time, in MSCC, line geometric information is not seen
by higher layers of the decoder transformer.

We propose a new neural network approach called multi-Scale defOrmable transFormer
for camera calibratIon with enhanced line queries (SOFI). Our model uses deformable at-
tention to extract information from higher-resolution feature maps. Plus, SOFI uses line
segment geometric information as input for each encoder layer.

Our contributions are summarized as follows:

• We propose a new initialization for lines’ queries which not only improves transformer-
based models for camera calibration, but it also allows us to use the deformable atten-
tion mechanism.

• We reformulate the line classification functions. Additionally, we update the loss func-
tions’ coefficients, giving more importance to the camera parameters losses than to the
line classification losses.

• We propose a novel framework that achieves new state-of-the-art results in in- and out-
of-distribution datasets.

2 Background

2.1 Camera Calibration
Camera calibration methods are used for estimating camera parameters. Earlier methods
for camera calibration are based on the use of vanishing points (VPs) and the horizon line.
Schafalitzky and Zimmerman [15] proposed an automatic VP detection model by grouping
geometric features. Tretyak [19] presented a parsing framework to estimate VPS by geo-
metrically analyzing low-level geometric features to estimate the zenith VP and the horizon
line. However, to be effective, these approaches require images of human-made structures

Citation
Citation
{Workman, Greenwell, Zhai, Baltenberger, and Jacobs} 2015

Citation
Citation
{Workman, Zhai, and Jacobs} 2016

Citation
Citation
{Bogdan, Eckstein, Rameau, and Bazin} 2018

Citation
Citation
{Lee, Sung, Lee, and Kim} 2020

Citation
Citation
{Zhai, Workman, and Jacobs} 2016

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

Citation
Citation
{Carion, Massa, Synnaeve, Usunier, Kirillov, and Zagoruyko} 2020

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Schaffalitzky and Zisserman} 2000

Citation
Citation
{Tretyak, Barinova, Kohli, and Lempitsky} 2012

SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI 3

(e.g., buildings), rich in geometric content that satisfy the Manhattan or Atlanta environment
assumptions.

On the other hand, early deep learning models directly estimated the camera parameters
by extracting geometric cues using convolutional layers [23, 24]. To improve results, deep
learning models used line segments detected by LSD [21] algorithm to better understand
the scene. However, these approaches require post-processing steps and have complicated
architectures for integrating the line information into the deep learning model.

Lee et al. [11] introduced Camera calibration TRansformer with Line-Classification
(CTRL-C), the first end-to-end transformer model for camera calibration. The network used
a CNN backbone to extract image features and feed them into an encoder-decoder trans-
former model. It also utilized line information to achieve better results. Nevertheless, in
CTRL-C, the input was restricted to the lowest-resolution feature map, while higher resolu-
tion feature maps were ignored. Song et al. [17] observed that low-resolution (high-level)
feature maps contain global information about an image, while higher-resolution (low-level)
features capture image details. The authors [17] propose MSCC, a multi-scale transformer
model for camera calibration. MSCC uses higher-level feature maps to retrieve informa-
tion about image structures and low-level feature maps to get finer details about vanishing
points and horizon lines. Despite achieving new state-of-the-art (SOTA) results, standard
transformers models are not time-efficient for processing low-level features because of high
complexity associated with the encoder stage.

2.2 DETR-based methods
Since Carion et al. introduced DEtection TRansformer (DETR), many methods have been
proposed to improve the DETR (e.g., see [16]). In this section, we provide a short description
of the DETR model and how it is used in CTRL-C [11] and MSCC [17]. Then, we describe
the deformable attention mechanism proposed in deformable DETR [30]. We end the section
by discussing about the query formulation used in end-to-end transformer models.

2.2.1 Encoder in Detection Transformer for Camera Calibration

DEtection TRansformer [3] is the first end-to-end transformer model that discards post-
processing steps. It consists of a backbone, an encoder and a decoder. The backbone pro-
duces a set of feature maps where only the highest-level feature map goes to the encoder
for feature enhancing. This feature encoding consists on intra-scale processing using an
attention mechanism [20] defined as:

Attn = Softmax(
QKT
√

d
)V (1)

where Q, K, and V represent the queries, keys, and values, respectively. For the encoder part,
we have that Q = K =V = f ∈R(HW)×d where f is the given feature map of height H, width
W , and number of channels d.

CTRL-C [11] and MSCC [17] follows the previously described feature map enhanc-
ing method. The difference between the two models is that CTRL-C applies it to only the
highest-level feature map, and MSCC to the two highest-level feature maps using a different
encoder for each feature map. Then, each enhanced feature map is passed to a decoder to
estimate the camera parameters.

Citation
Citation
{Workman, Greenwell, Zhai, Baltenberger, and Jacobs} 2015

Citation
Citation
{Workman, Zhai, and Jacobs} 2016

Citation
Citation
{von Gioi, Jakubowicz, Morel, and Randall} 2010

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

Citation
Citation
{Shehzadi, Hashmi, Stricker, and Afzal} 2023

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

Citation
Citation
{Zhu, Su, Lu, Li, Wang, and Dai} 2020

Citation
Citation
{Carion, Massa, Synnaeve, Usunier, Kirillov, and Zagoruyko} 2020

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

4 SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI

In the encoder, CTRL-C estimates the camera parameters using a global feature map.
Although the pixels of the feature map are rich in information, the spatial size is too small.
On the other hand, MSCC uses CTRL-C output queries as pre-initilized queries to process
them using a second decoder block with the second highest-level feature map. However, the
global information is lost through each layer of the second decoder block. We solve this
issue by using the deformable attention mechanism to promote cross-scale processing while
keep a good complexity time for the encoder block.

2.2.2 Deformable Attention Mechanism

The deformable attention mechanism is proposed in DeformableDETR [30] to allow DETR
to use high-resolution feature maps without compromising inference time. The idea consists
on compute K sampling points as well as an attention matrix from the feature map for each
query q ∈Q such as K≪HW , reducing the complexity time from O(H2W 2d) to O(KHWd)1.
For a single-head deformable attention mechanism, the equation is

DeformAttn(zq, pq,x) =
K

∑
k=1

Aqk ⋅x(pq+∆pqk) (2)

where k indexes the sampling keys. The kth sampling key is computed as pq+∆pqk where
∆pqk is the sampling offset and pq is the 2d-reference point for query q. Aqk is the kth row of
the attention weight Aq ∈RK×d . The weights of Aqk satisfy ∑K

k=1 Aqk = 1.
In addition to the time complexity reduction, DeformAttn has a variation MSDeformAttn,

where MS stands for Multi-Scale, that promotes cross-scale interaction. Similar to DeformAttn,
given a set of L feature maps {xl}L

l=1, MSDeformAttn samples K sampling point for each xl .
The mathematical representation for a single-head multi-scale deformable attention is

L

∑
l=1

K

∑
k=1

Alqk ⋅x
l
(φl(p̂q)+∆plqk) (3)

where xl ∈ RHl×Wl×d . p̂q is the normalized 2d coordinates whose values lie in the range of
[0,1], and that is re-scaled to dimensions of the feature map of the lth level by the function
φl . Like eq. (2), the attention weight Alqk satisfies ∑L

l=1∑
K
k=1 Alqk = 1.

For the encoder, a query q corresponds to a pixel in xl meaning that the pixel will interact
with K points from xl (intra-scale interaction), and K points from the each of the remain-
ing (L− 1) feature maps (cross-scale interaction). This allows the propagation of global
information to low-level feature maps.

2.2.3 Queries in Decoder Transformers

In this section, we summarize prior related research on modifying the query inputs for
DETR-based models. DETR [3] uses learnable vectors to provide positional constraints.
However, this works assuming that the learnable vectors contain coordinate information.
Dynamic Anchor Boxes (DAB)-DETR [13] and Anchor-DETR [22] proposed anchor boxes
and points to extract positional information and improve decoder performance.

In CTRL-C [11] and MSCC [17], line content queries were initialized with the line ge-
ometric information, while the positional queries were initialized with zero vectors. The

1Refer to [30] for the full derivations of the time complexities.

Citation
Citation
{Zhu, Su, Lu, Li, Wang, and Dai} 2020

Citation
Citation
{Carion, Massa, Synnaeve, Usunier, Kirillov, and Zagoruyko} 2020

Citation
Citation
{Liu, Li, Zhang, Yang, Qi, Su, Zhu, and Zhang} 2022

Citation
Citation
{Wang, Zhang, Yang, and Sun} 2022

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

Citation
Citation
{Zhu, Su, Lu, Li, Wang, and Dai} 2020

SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI 5

Figure 1: Model overview. Our proposed network uses ResNet50 [6] as backbone to extract
feature maps from stage 2 and 3 which are then fed to the deformable transformer encoder.

approaches share the first decoder layer as done in the vanilla DETR [3] model. Unfortu-
nately, in CTRL-C and MSCC, line geometric information is lost through each layer because
the positional query is zero. Also, their use of positional queries with zero vectors makes
it impossible to use a deformable attention mechanism that requires the use of positional
queries to extract reference points.

3 Methodology

3.1 Model Overview

We present the SOFI architecture in Fig. 1. The input image is processed using ResNet50
[6] to generate multi-scale feature maps, which are then used as encoder input and to prepare
the line content queries. The encoder enhances the backbone feature maps and passes them
to the decoder. The decoder outputs are processed using Feed-Forward Networks (FFNs),
which produce estimates of the camera parameters (see top-right of the figure) and estimate
the line segment in the image (see bottom-right of the figure).

In what follows, we provide a detailed explanation of our modified line queries and the
line classification method. Our deformable encoder-decoer transformer network is adopted
from Deformable DETR [30]. For our SOFI network, we use 32 sampling offsets in the
deformable encoder, and 8 sampling offsets in the deformable decoder (see section 4.1 from
[30] for information about the deformable attention mechanism and the sampling offsets)

3.1.1 Line Queries Module

Our Queries consist of content-based components qcon and position-based components qpos.
We follow the same procedure for position queries as in [11, 17]. Given the two endpoints

of a line, we compute the homogeneous line representation l = [a,b,c] where c is the line
offset and a/b is the line slope. We also remove directional ambiguities (l and −l represents
the same line) using s = [a2,ab,b2,bc,ac,c2].

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Carion, Massa, Synnaeve, Usunier, Kirillov, and Zagoruyko} 2020

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Zhu, Su, Lu, Li, Wang, and Dai} 2020

Citation
Citation
{Zhu, Su, Lu, Li, Wang, and Dai} 2020

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

6 SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI

Next, we define our line position-based component using: qpos = FCL(s) where FCL is
a fully-connected layer that maps s to a d−dimensionl vector, where d represents the input
size of the decoder.

Similarly, we define our content queries using qcon = FCL(LS(p, F)) where p represents
the lines’ endpoints, F represents the chosen feature maps, and LS (for line sampling) gen-
erates N = 16 uniformly sampled points between the endpoints.

3.1.2 Line Classification

We classify each detected line segment into either (i) horizontal line, (ii) vertical line, or
(iii) other. In addition, for horizontal and vertical line classifications, we compute a con-
fidence score that reflects the importance of using the detected line for camera calibration.
We describe how to setup the classification loss and confidence loss functions in the section
3.2. Here, we describe our line classifier and the regression model used for estimating the
confidence level.

We use a fully-connected layer followed by a sigmoid activation function for implement-
ing line classification. The classifier input comes from the output of the deformable decoder.
More precisely, our classifier is given by Fclass ∶RN×d →RN×3 where N = 512 represents the
number of detected lines and d = 256 represents the dimension of the decoder vector output
for each line.

Similarly, we use a fully-connected layer followed by sigmoid activation function for
estimating the confidence score. Thus, our regression network is Fscore ∶ RN×d → RN×1.
Here, we have the same input as for line classification. The output represents the confidence
score for each one of our N lines.

3.2 Loss function

As shown in Fig. 1, we need to design loss functions for each output. We use: cosine distance
for Zenith VP, and L1 loss for Horizon Line and field of view (FoV) (see the Supplementary
Material). We use the focal loss for the estimated classification probability of each class and
the estimated confidence level as given by [12]:

FL(q) = −
1
N

N

∑
i=0
(α1(1−q(i))γ logq(i)+α2(q(i))γ log(1−q(i))), (4)

where q is the confidence score or the classification probability, α1 and α2 are the weighted
coefficients that are determined by distances to the vanishing points as given in section 3.5
of [11], and γ = 2.

Our overall loss L is defined using:

L = 5Lzvp+5Lhl +5LFoV +Lscore+Lclass (5)

where the Lzvp, Lhl and LFoV define the loss functions of the camera parameters, while
Lclass and Lscore are the loss functions for the confidence and the line class probability that
use Eq. (4). Here, we place more importance to estimating camera parameters than line
classification.

Citation
Citation
{Lin, Goyal, Girshick, He, and Doll{á}r} 2017

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI 7

Model Up (○) ↓ Pitch (○) ↓ Roll (○) ↓ FoV (○) ↓

Mean Med. Mean Med. Mean Med. Mean Med.

Google Street View [1]

Upright [9] 3.05 1.92 2.90 1.80 6.19 0.43 9.47 4.42
DeepHorizon [24] 3.58 3.01 2.76 2.12 1.78 1.67 - -
Perceptual [8] 2.73 2.13 2.39 1.78 0.96 0.66 4.61 3.89
UprightNet [25] 28.20 26.10 26.56 24.56 6.22 4.33 - -
GPNet [10] 2.12 1.61 1.92 1.38 0.75 0.47 3.59 2.72
CTRL-C[11] 1.71 1.43 1.52 1.20 0.57 0.46 3.38 2.64
MSCC [17] 1.75 1.42 1.56 1.24 0.58 0.46 3.04 2.29
SOFI (ours) 1.64 1.44 1.51 1.28 0.54 0.43 3.09 2.79

Holicity [29]

DeepHorizon* [24] 7.82 3.99 6.10 2.73 3.97 2.67 - -
Perceptual* [8] 7.37 3.29 6.32 2.86 3.10 1.82 - -
GPNet* [10] 4.17 1.73 1.46 0.74 1.36 0.95 - -
CTRL-C [11] 2.66 2.19 2.26 1.78 1.09 0.77 12.41 11.59
MSCC [17] 2.28 1.88 1.87 1.43 1.08 0.81 13.60 12.20
SOFI (ours) 2.23 1.82 1.75 1.31 1.16 0.85 11.47 11.25

Table 1: Results of camera calibration parameters on testing datasets. The ∗ is used to mark
models that were trained using the SUN360 [26] dataset.

4 Results

4.1 Dataset

Google Street View: In our experiments, we train all models with 12679 images from the
Google Street View dataset [1]. The dataset consists of images of streets, buildings and
landmarks that satisfy the Manhattan World assumption (three orthogonal vanishing points).
Additionally, this dataset contains 535 images for validation, and 1333 for testing.
Horizon Line in the Wild: Horizon Line in the Wild (HLW) dataset [24] only provides
ground-truth for the horizon lines. We use 2019 images from this dataset to test horizon line
detection in unseen data. Here, by unseen data, we refer to the fact that none of the models
are trained on this dataset.
Holicity: We test SOFI on the holicity dataset [29] to estimate all camera parameters. The
dataset consists of 2024 images. No model is trained on this dataset.

4.2 Implementation Details

We train all the models using a single Nvidia RTX A5500 GPU for 30 epochs. For SOFI ,
we use a learning rate of 2×10−4 for the first 20 epochs. For the last 10 epochs, we set the
learning rate to 2×10−5. We use AdamW for optimization with weight decay of 10−4.

We train MSCC using the recipe from LETR [27] due to the lack of training information
in the original paper. First, we train the coarse stage for 30 epochs. Second, we train the
coarse and fine stages for another 30 epochs. For MSCC and CTRL-C, we use a learning of
10−4, and we decrease the value to 10−5 at epoch 21.

Citation
Citation
{gsv}

Citation
Citation
{Lee, Shechtman, Wang, and Lee} 2013

Citation
Citation
{Workman, Zhai, and Jacobs} 2016

Citation
Citation
{Hold-Geoffroy, Sunkavalli, Eisenmann, Fisher, Gambaretto, Hadap, and Lalonde} 2018

Citation
Citation
{Xian, Li, Fisher, Eisenmann, Shechtman, and Snavely} 2019

Citation
Citation
{Lee, Sung, Lee, and Kim} 2020

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

Citation
Citation
{Zhou, Huang, Dai, Luo, Chen, and Ma} 2020

Citation
Citation
{Workman, Zhai, and Jacobs} 2016

Citation
Citation
{Hold-Geoffroy, Sunkavalli, Eisenmann, Fisher, Gambaretto, Hadap, and Lalonde} 2018

Citation
Citation
{Lee, Sung, Lee, and Kim} 2020

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

Citation
Citation
{Xiao, Ehinger, Oliva, and Torralba} 2012

Citation
Citation
{gsv}

Citation
Citation
{Workman, Zhai, and Jacobs} 2016

Citation
Citation
{Zhou, Huang, Dai, Luo, Chen, and Ma} 2020

Citation
Citation
{Xu, Xu, Cheung, and Tu} 2021

8 SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI

Model Google Street View [1] Horizon Line in the Wild [24] Holicity [29]

@ 0.10 @ 0.15 @ 0.25 @ 0.10 @ 0.15 @ 0.25 @ 0.10 @ 0.15 @ 0.25

DeepHorizon* [24] - - 74.25 - - 45.63 - - 70.13
Perceptual* [8] - - 80.40 - - 38.29 - - 70.80
GPNet* [10] - - 83.12 - - 48.90 - - 81.72
CTRL-C 69.49 78.92 87.16 24.04 33.56 46.37 38.84 55.13 72.31
MSCC 70.39 79.59 87.63 24.85 34.44 47.28 49.71 63.60 77.43
SOFI (ours) 70.32 79.84 87.87 27.93 37.55 49.69 59.83 72.05 82.96

Table 2: AUC percentages (out of 100%) for horizon line errors on testing datasets. The ∗ is
used to mark models that were trained using the SUN360 [26] dataset. @ 0.10, @ 0.20, and
@ 0.25 refer to the area under the curve from zero to Error=0.10, 0.20, and 0.25 as shown in
Fig. 3.

Model Google Street View [1] Horizon Line in the Wild [24] Holicity [29]

CTRL-C [11] 22.6 19.0 25.9
MSCC [11] 18.0 13.2 18.4
SOFI (ours) 21.6 17.4 23.6

Table 3: Inference speed comparisons for transformers-based models with batch size of
1. Results are shown in terms of frames per second. Refer to section 4.2 for hardware
description.

4.3 Comparisons

We compare SOFI against Upright [9], DeepHorizon [24], UprightNet [25], GPNet [10],
CTRL-C[11], and MSCC [17]. DeepHorizon, Perceptual, and GPTNet were trained on the
SUN360 [26] dataset, which is no longer available (due to license issues) for the Holicity
dataset. For evaluation metrics, we use the up-vector, two angles of the rotation matrix
(pitch and roll), the field of view (FoV), and the area under the curve (AUC) percentage
error for the horizon line. For all the experiments, we consider a camera model with no skew
(square pixels), and yaw = 0 [7, 11, 17] (the third angle in the camera rotation matrix). For
information about the estimation of the up vector, the roll, and pitch using the zenith VP and
the FoV, see section 3.1 in [17]

We provide comparative results for the camera parameters and the horizon line in Table
1 and Table 2, respectively. SOFI provides the best results on the Google Street View dataset
but for a small margin of difference. We believe this happens because the dataset is too
relatively easy to learn or the training and testing sets are very similar. On the other hand,
SOFI increases the margin of difference for out-of-distribution datasets (Holicity and HWL
datasets. We find the most significant improvement is in the horizon line detection, where
there is an improvement of 5 points with respect to MSCC, as shown in Tab. 2 and Fig. 3.
We want to clarify that the FoV error for the Holicity dataset is large because the sampling
range of this dataset is bigger than the one in the training dataset.

We provide horizon line estimation examples for transformer-based models in Fig. 2. We
note that SOFI provides consistently accurate estimates in all of the examples. In contrast,
we can see that CTRL-C and MSCC can be very inaccurate for the unseen datasets of the
bottom two rows.

We present inference speed results in table 3. Despite the fact that SOFI uses multiple
feature maps, at higher resolutions than MSCC and CTRL-C, our inference speed remains
very competitive. SOFI runs faster than MSCC. SOFI performs nearly as fast as CTRL-C
which only uses a single low-resolution feature map.

Citation
Citation
{gsv}

Citation
Citation
{Workman, Zhai, and Jacobs} 2016

Citation
Citation
{Zhou, Huang, Dai, Luo, Chen, and Ma} 2020

Citation
Citation
{Workman, Zhai, and Jacobs} 2016

Citation
Citation
{Hold-Geoffroy, Sunkavalli, Eisenmann, Fisher, Gambaretto, Hadap, and Lalonde} 2018

Citation
Citation
{Lee, Sung, Lee, and Kim} 2020

Citation
Citation
{Xiao, Ehinger, Oliva, and Torralba} 2012

Citation
Citation
{gsv}

Citation
Citation
{Workman, Zhai, and Jacobs} 2016

Citation
Citation
{Zhou, Huang, Dai, Luo, Chen, and Ma} 2020

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Lee, Shechtman, Wang, and Lee} 2013

Citation
Citation
{Workman, Zhai, and Jacobs} 2016

Citation
Citation
{Xian, Li, Fisher, Eisenmann, Shechtman, and Snavely} 2019

Citation
Citation
{Lee, Sung, Lee, and Kim} 2020

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

Citation
Citation
{Xiao, Ehinger, Oliva, and Torralba} 2012

Citation
Citation
{Hofinger, Bul{ò}, Porzi, Knapitsch, Pock, and Kontschieder} 2020

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI 9

Ground Truth CTRL-C [11] MSCC [17] SOFI (Ours)

Figure 2: Examples of horizon line estimation on the Google Street View [1] test set (top
row), the Horizon Line in the Wild [24] test set (middle row), and the Holicity [29] test set
(bottom row).

Horizon line in the Wild Holicity

Figure 3: Cumulative distribution error for the horizon line on Horizon Line in the Wild [24]
and Holicity test set [29].

4.4 Ablation Study
We estimate the camera parameters using the original Deformable DETR (with four feature
maps) [30] as a baseline. We modify it to use only the line geometry information to evaluate
against CTRL-C [11]. As shown in Tab. 4, Deformable-DETR beats CTRL-C in the Google
Street View dataset, but it does not on the Holicity dataset. This performance occurs because
of the line query formulation CTRL-C has, which does not allow the estimation of proper
sampling points. We refer the reader to the supplementary material for more information
about this problem. There, we conducted experiments using only CTRL-C to validate the
importance of choosing good coefficients for each loss and our new line queries that use
geometric and content information.

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Song, Kang, Moteki, Suzuki, Kobayashi, and Tan} 2024

Citation
Citation
{gsv}

Citation
Citation
{Workman, Zhai, and Jacobs} 2016

Citation
Citation
{Zhou, Huang, Dai, Luo, Chen, and Ma} 2020

Citation
Citation
{Workman, Zhai, and Jacobs} 2016

Citation
Citation
{Zhou, Huang, Dai, Luo, Chen, and Ma} 2020

Citation
Citation
{Zhu, Su, Lu, Li, Wang, and Dai} 2020

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

10 SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI

Model Up (○) ↓ Pitch (○) ↓ Roll (○) ↓ FoV (○) ↓ AUC (%) ↑ FPS ↑
Google Street View [1]

CTRL-C [11] 1.71 1.52 0.57 3.38 87.16 22.6
Deformable-DETR 1.68 1.51 0.54 3.13 87.57 19.6
SOFI∗† 1.69 1.49 0.61 3.03 87.48 22.1
SOFI† 1.66 1.49 0.55 3.11 87.10 21.4
SOFI 1.64 1.51 0.54 3.09 87.87 21.6
SOFI-B 1.58 1.47 0.59 2.94 89.12 18.2

Holicity [29]

CTRL-C [11] 2.66 2.26 1.09 12.41 72.31 25.9
Deformable-DETR 2.78 2.45 1.03 10.93 71.56 21.0
SOFI∗† 2.52 2.14 1.07 12.02 83.18 25.2
SOFI† 2.27 1.81 1.22 12.53 79.82 23.1
SOFI 2.23 1.75 1.16 11.47 82.96 23.6
SOFI-B 2.15 1.70 1.12 11.22 83.21 18.9

Table 4: Ablation study. ∗ means the model uses the last two feature maps from the back-
bone. †: means the mode uses the same line classification method as in [11]. SOFI-B uses
the last three feature maps. All SOFI variations were trained with 32 and 8 sampling offsets
for the encoder and decoder, respectively.

We create SOFI∗† to improve the speed and precision. SOFI∗† uses the last two feature
maps and incorporates the line content information. These modifications not only improved
the speed but also improved the metrics, beating CTRL-C on both datasets. Then, we replace
the highest-level feature with the third highest-level one. The results are shown in SOFI†.
Next, we replace the line classification proposed in [11] with ours described in sec. 3.1.2.
The results in SOFI prove that our line classification module helps the model to extract richer
information about line content.

We also create SOFI-Big (SOFI-B), a modified SOFI network that uses the last three
feature maps. As expected, using more feature maps results in better camera parameter esti-
mations, as reflected in the reduced errors for FoV and AUC for the horizon line. Although
the significant increment in the FPS for minor accuracy improvements makes SOFI-B un-
suitable for applications, it opens new borders to investigate faster cross-scale interaction
methods.

5 Conclusions
We present a new model that uses deformable attention to produce new SOTA results while
operating at competitive inference speed. Our model also introduces a new line query ap-
proach that provides better camera calibration estimates than what can be achieved with
DETR architectures. Our experiments document significant performance improvements in
unseen datasets (Holicity and Horizon line in the Wild datasets).

In future work, we will consider a deeper study of the encoder because of its important
role in feature maps enhancing. An important observation from this work is that increasing
the number of sampling points in the deformable encoder produces better feature maps.
We will consider increasing the number of points without compromising speed. Another
direction is to explore different cross-scale interaction mechanism that lead to an acceptable
time complexity.

Citation
Citation
{gsv}

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Zhou, Huang, Dai, Luo, Chen, and Ma} 2020

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

Citation
Citation
{Lee, Go, Lee, Cho, Sung, and Kim} 2021

SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI 11

Acknowledgment
This work was supported in part by the National Science Foundation under Grant 1949230,
Grant 1842220, and Grant 1613637

References
[1] Google street view images api. URL https://developers.google.com/

maps/.

[2] Oleksandr Bogdan, Viktor Eckstein, Francois Rameau, and Jean-Charles Bazin. Deep-
calib: a deep learning approach for automatic intrinsic calibration of wide field-of-view
cameras. In Proceedings of the 15th ACM SIGGRAPH European Conference on Visual
Media Production, 2018.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kir-
illov, and Sergey Zagoruyko. End-to-end object detection with transformers. In Euro-
pean conference on computer vision, pages 213–229. Springer, 2020.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Trans-
formers for image recognition at scale. ICLR, 2021.

[5] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM, 24(6):381–395, 1981.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[7] Markus Hofinger, Samuel Rota Bulò, Lorenzo Porzi, Arno Knapitsch, Thomas Pock,
and Peter Kontschieder. Improving optical flow on a pyramid level. In European
Conference on Computer Vision, pages 770–786. Springer, 2020.

[8] Yannick Hold-Geoffroy, Kalyan Sunkavalli, Jonathan Eisenmann, Matthew Fisher,
Emiliano Gambaretto, Sunil Hadap, and Jean-François Lalonde. A perceptual mea-
sure for deep single image camera calibration. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2354–2363, 2018.

[9] Hyunjoon Lee, Eli Shechtman, Jue Wang, and Seungyong Lee. Automatic upright ad-
justment of photographs with robust camera calibration. IEEE transactions on pattern
analysis and machine intelligence, 36(5):833–844, 2013.

[10] Jinwoo Lee, Minhyuk Sung, Hyunjoon Lee, and Junho Kim. Neural geometric parser
for single image camera calibration. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XII 16, pages 541–
557. Springer, 2020.

https://developers.google.com/maps/
https://developers.google.com/maps/

12 SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI

[11] Jinwoo Lee, Hyunsung Go, Hyunjoon Lee, Sunghyun Cho, Minhyuk Sung, and Junho
Kim. Ctrl-c: Camera calibration transformer with line-classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 16228–16237,
2021.

[12] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss
for dense object detection. In Proceedings of the IEEE international conference on
computer vision, pages 2980–2988, 2017.

[13] Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu,
and Lei Zhang. DAB-DETR: Dynamic anchor boxes are better queries for DETR.
In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=oMI9PjOb9Jl.

[14] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted win-
dows. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2021.

[15] Frederik Schaffalitzky and Andrew Zisserman. Planar grouping for automatic detection
of vanishing lines and points. Image and Vision Computing, 18(9):647–658, 2000.

[16] Tahira Shehzadi, Khurram Azeem Hashmi, Didier Stricker, and Muhammad Zeshan
Afzal. Object detection with transformers: A review, 2023.

[17] Xu Song, Hao Kang, Atsunori Moteki, Genta Suzuki, Yoshie Kobayashi, and Zhim-
ing Tan. Mscc: Multi-scale transformers for camera calibration. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages
3262–3271, January 2024.

[18] Xin Tong, Xianghua Ying, Yongjie Shi, Ruibin Wang, and Jinfa Yang. Transformer
based line segment classifier with image context for real-time vanishing point detection
in manhattan world. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 6093–6102, June 2022.

[19] Elena Tretyak, Olga Barinova, Pushmeet Kohli, and Victor Lempitsky. Geometric im-
age parsing in man-made environments. International Journal of Computer Vision, 97:
305–321, 2012.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is
all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[21] R.G. von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall. LSD: A fast line segment
detector with a false detection control. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(4):722–732, apr 2010. doi: 10.1109/tpami.2008.300.

https://openreview.net/forum?id=oMI9PjOb9Jl
https://openreview.net/forum?id=oMI9PjOb9Jl
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

SEBASTIAN JANAMPA AND MARIOS PATTICHIS: SOFI 13

[22] Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun. Anchor detr: Query design
for transformer-based detector. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 2567–2575, 2022.

[23] Scott Workman, Connor Greenwell, Menghua Zhai, Ryan Baltenberger, and Nathan
Jacobs. Deepfocal: A method for direct focal length estimation. In 2015 IEEE In-
ternational Conference on Image Processing (ICIP), pages 1369–1373, 2015. doi:
10.1109/ICIP.2015.7351024.

[24] Scott Workman, Menghua Zhai, and Nathan Jacobs. Horizon lines in the wild. In
British Machine Vision Conference (BMVC), 2016.

[25] Wenqi Xian, Zhengqi Li, Matthew Fisher, Jonathan Eisenmann, Eli Shechtman, and
Noah Snavely. Uprightnet: geometry-aware camera orientation estimation from sin-
gle images. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9974–9983, 2019.

[26] Jianxiong Xiao, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Recognizing
scene viewpoint using panoramic place representation. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 2695–2702. IEEE, 2012.

[27] Yifan Xu, Weijian Xu, David Cheung, and Zhuowen Tu. Line segment detection using
transformers without edges. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4257–4266, 2021.

[28] Menghua Zhai, Scott Workman, and Nathan Jacobs. Detecting vanishing points using
global image context in a non-manhattan world. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5657–5665, 2016.

[29] Yichao Zhou, Jingwei Huang, Xili Dai, Linjie Luo, Zhili Chen, and Yi Ma. HoliCity:
A city-scale data platform for learning holistic 3D structures. 2020. arXiv:2008.03286
[cs.CV].

[30] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. De-
formable detr: Deformable transformers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020.

