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A Details of Implementations
Our temporal decoder module adopts a transformer decoder structure, utilizing queries with
positional encoding to process sequences of video clips. The initialization of the query is
adjusted by using pytorch init.normal_ to change the variance, while keeping the mean
unchanged. This decoder is equipped with 4 attention heads and 2 layers, enhancing its
capability to handle temporal sequence data. Additionally, to maintain the integrity of infor-
mation flow and to enhance feature integration, the decoder incorporates skip connections,
which help prevent gradient vanishing issues in deep network layers, thereby improving the
model’s efficiency and accuracy in processing video data. Moreover, our decoder applies the
ReLU activation function after each linear transformation and employs a dropout rate of 0.7
to enhance the model’s generalization ability and reduce overfitting, ensuring stability and
reliability when handling diverse video data.

The weight-score regression module is designed with a dual-pathway architecture for
processing input through separate mean and weight calculations. It comprises linear trans-
formations where the input x is first mapped from 1024 to 512 dimensions by layer1_mean
and layer1_weight, and subsequently to 256 dimensions by layer2_mean and layer2_weight.
The final layer, layer3_mean, computes a single value while layer3_weight uses a softmax
function for weight computation, ensuring outputs are probability distributions. The class
also uses ReLU activation functions for non-linear transformations. During the forward
pass, the network computes weighted sums of features by multiplying mean values with
corresponding weights from both pathways, integrating these to produce final logits.

B Additional Result
Effect of different variance to initialize query Table 1, 2, and 3 respectively show the
SRCC results for using different variances to initialize query embeddings in RG, Fis-V, and
Logo. The results demonstrate that larger variances lead to better SRCC results.

Effect of different modules Table 4 shows the results of our ablation studies on four
subclasses of RG, demonstrating the effectiveness of each module. Among the results, it
is observed that for all subclasses except the ball label, each module enhances the overall
Spearman’s Rank Correlation Coefficient (SRCC) results. It is particularly noteworthy that
attention loss facilitates the most substantial improvement in SRCC results.
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Variance Ball Clubs Hoop Ribbon Avg.
0.1 0.8099 0.7963 0.7794 0.8368 0.8056
0.5 0.8144 0.8084 0.7628 0.8297 0.8038
1 0.8416 0.7839 0.7735 0.8413 0.8101
2 0.7978 0.8319 0.7736 0.8488 0.8130
3 0.8107 0.8272 0.7664 0.849 0.8133
5 0.7915 0.8042 0.786 0.8412 0.8057

10 0.8075 0.7782 0.8248 0.8128 0.8058
Table 1: Different variance for query initialization of RG dataset.

Variance PCS TES Avg.
0.1 0.824 0.7008 0.7624
0.5 0.8199 0.706 0.7630
1 0.7906 0.674 0.7323
2 0.858 0.6954 0.7767
3 0.8408 0.7138 0.7773
5 0.6685 0.7165 0.6925
10 0.6667 0.6905 0.6786

Table 2: Different variance for query ini-
tialization of Fis-V dataset.

Variance SRCC
0.1 0.7162
0.5 0.7173
1 0.7513
2 0.7156
3 0.6731
5 0.6766

10 0.6603

Table 3: Different variance for query ini-
tialization of LOGO dataset.

C Visualization of Attention Map
Variance in Query Initialization Module We compare different variances in the query
initialization module as shown in Figure 1. The results show that using relatively larger
variances can enhance network performance and increase the correlation in the self-attention
map.

(a) (b) (c) (d)

Figure 1: Self-attention map of query initialized with different variances. Figures 1(a), 1(b),
1(c), and 1(d) illustrate the self-attention maps corresponding to variances of 0.1, 1, 2, and
8, respectively.
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Ball
Variance × × × ✓

Positinal Encoding × × ✓ ✓
Attention Loss × ✓ ✓ ✓

Results 0.4828 0.8201 0.8233 0.8233
Clubs

Variance × × × ✓
Positinal Encoding × × ✓ ✓

Attention Loss × ✓ ✓ ✓
Results 0.6346 0.813 0.8089 0.8524

Hoop
Variance × × × ✓

Positinal Encoding × × ✓ ✓
Attention Loss × ✓ ✓ ✓

Results 0.6264 0.7606 0.7696 0.837
Ribbon

Variance × × × ✓
Positinal Encoding × × ✓ ✓

Attention Loss × ✓ ✓ ✓
Results 0.7669 0.8353 0.8366 0.8568

Avg. 0.6277 0.8073 0.8096 0.8424
Table 4: Ablation study on RG of four subclasses.


