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A Appendix

A.1 Method Preliminaries

Image Restoration. In our image restoration module of FLARE, we employ the Swin Trans-
former (SwinIR) for enhancing low-quality input images ILR ∈RH×W×Cin where H represents
the image height, W signifies the image width, and Cin corresponds to the number of input
channels [26]. This begins by extracting shallow features F0 ∈ RH×W×C through a 3x3 con-
volutional layer, which performs visual processing and feature mapping. Subsequently, deep
features FDF ∈RH×W×C are derived from F0 using the deep feature extraction module. Dur-
ing image reconstruction, the high-quality image IHR is reconstructed by combining shallow
and deep features via the reconstruction module HREC as IHR = HREC(F0 +FDF). The image
restoration process is defined as,

IHR = SwinIR(ILR) = Fswin(Eswin(ILR))+Loss (7)

where Eswin(.) refers to the encoder that extracts features from the input image, whileFswin(.)
represents the decoder responsible for reconstructing the output image from these features.
The Loss function quantifies the difference between the input and output images produced
by the SwinIR model as Loss(ILR, IHR).
Diffusion Models. Diffusion models offer multi-modal image generation through two dis-
tinct stages: the forward noise process and the reverse denoising process. In the forward
process, a sequence x1,x2, ...,xT is generated from a starting point x0, drawn from the dis-
tribution p(x0), by iteratively adding noise. This process relies on the equation q(xt | x0) =
N
(
xt ;αtx0,σ

2
t I
)
. Here, each step introduces a noise component ε , sampled from the stan-

dard normal distribution. Conversely, the denoising process models the transition from xt to
xt−1 through the conditional probability pθ (xt−1 | xt). In this stage, the predicted statistics,
µ̂θ (xt) , Σ̂θ (xt), are determined, guided by a learnable parameter θ . Optimization occurs
through a loss function ℓt

simple(θ) [31] quantifying the difference between actual and pre-
dicted noise, leveraging a learnable neural network. The trained neural network, known as
the predictor, can then generate an image x̂0. We employed the UniDiffuser diffusion model
[5]for handling various data types, allowing effective generation of image-text and image-
image pairs without added complexity. UniDiffuser, designed for text-to-image tasks, is
represented as,

UniDiffuser(prompt) = F(T (prompt),G(image)) (8)

where T (prompt) and G(image) stand for the text encoder and image generator, respectively.
The fusion module F efficiently combines features from the text encoder and image genera-
tor, focusing on producing perceptually realistic results.

A.2 Additional Experimental Details

Implementation Details. We implemented our double-stage FLARE method on a single
NVIDIA A100 40GB GPU. In the first stage, we used SwinIR [26] (2021) for LR-to-HR
image conversion due to its effectiveness in image restoration. In the second stage, we gen-
erated K=4 high-resolution images using standard augmentations such as RandomFlip and
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ColorJitter. For weighted aggregation of the samples from D̃HR
Aug + D̃HR

T 2I (See Eq. 6), we em-
ployed α=0.50 and β=1.00. Finally, we trained the classifiers across all datasets and class
settings for 25 epochs using the Adam optimizer with a learning rate of 2e-5.

Downstream Datasets. In-domain tasks represent generalization performance when training
and testing are done on the same dataset, while out-of-domain tasks represent performance
when testing is done on a downstream dataset different from the one used for training.

Baselines. To assess the effectiveness of our proposed approach, we compare it against two
groups of methods in astronomical classification. The first group involves classification per-
formed directly on extracted images DLR (referred to as Raw_LR), while the second group
involves augmented versions of the raw images DLR

Aug (referred to as Raw_Aug_LR). For the
Raw_LR group, our initial baseline is established by [8]. Moving to the Raw_Aug_LR group,
we consider [29] as our second baseline, as it demonstrates the effectiveness of data aug-
mentation techniques in image classification.

Classifiers. We utilized state-of-the-art pre-trained CNN models to train our custom cos-
mos dataset, including ResNet-50 [17], GoogleNet [38], DenseNet-121 [21], and ViT-B/16
[12], which were initially trained on the ImageNet dataset [11]. Our primary task involved
classifying two distinct datasets: one for fine-grained data with 8 classes and the other for
macro-level categories with 4 classes. Through these extensive experiments on various Con-
vNets, we aimed to assess how well these models could classify data in different situations,
highlighting their flexibility and adaptability.

Metrics. We use two essential metrics for assessing the quality of HR images derived from
LR versions. The first metric, Peak Signal-to-Noise Ratio (PSNR) [41], measures image
noise, with higher values indicating improved image quality. The second metric, Multi-Scale
Structural Similarity (MS-SSIM) [20], evaluates structural and textural fidelity, with higher
MS-SSIM values signifying better preservation of intricate details in HR images compared
to LR. Furthermore, for classification models, we employed standard metrics, including Ac-
curacy, F1-Score, Precision, and Recall, to assess the performance of the classifiers across
all dataset variants [2].

A.3 Additional Results

Figure 7: The original raw dataset (Raw_Aug), when transformed into our combined dataset
using the FLARE approach, results in 7.8× increase in the number of samples. Ours repre-
sent the proposed SpaceNet dataset.
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Table 5: Quantitative assessment of 4 classifiers across different methodologies for Macro
and Fine-grained classes stating in-domain F1-Scores. FLARE indicate models trained on
our SpaceNet dataset, where SpaceNet is combined with α = 0.5 and β = 1.0 (Using Eq. 5
and 6). Average indicates average performance across all classifiers.

ResNet-50 [17] GoogleNet [38] DenseNet-121 [21] ViT-B/16 [12] Average
Data Type Method

F1-Score F1-Score F1-Score F1-Score F1-Score

Raw_LR [8] (bs.) 68.83(bs.) 67.38(bs.) 67.92(bs.) 72.00(bs.) 69.03(bs.)

Raw_Aug_LR [29] 74.57(5.74) ↑ 75.19(7.81) ↑ 76.04(8.12) ↑ 76.03(4.03) ↑ 75.45(6.42) ↑

Raw_Aug_HR 78.21(9.38) ↑ 77.68(10.30) ↑ 79.57(11.65) ↑ 80.39(8.39) ↑ 78.96(9.93) ↑

T2I_Aug_HR 80.54(11.71) ↑ 80.88(13.50) ↑ 80.80(12.88) ↑ 81.69(9.69) ↑ 80.97(11.94) ↑

Macro

FLARE (Ours) 87.69(18.86) ↑↑ 84.67(17.29) ↑↑ 85.70(17.78) ↑↑ 86.50(14.50) ↑↑ 86.14(17.11) ↑↑

Raw_LR [8] (bs.) 55.80(bs.) 54.16(bs.) 55.62(bs.) 58.19(bs.) 55.94(bs.)

Raw_Aug_LR [29] 66.58(10.78) ↑ 67.21(13.05) ↑ 67.42(11.80) ↑ 66.43(8.24) ↑ 66.91(10.97) ↑

Raw_Aug_HR 70.53(14.73) ↑ 69.89(15.73) ↑ 72.53(16.91) ↑ 72.44(14.25) ↑ 71.35(15.41) ↑

T2I_Aug_HR 77.19(21.39) ↑ 76.05(21.89) ↑ 77.06(21.44) ↑ 77.02(18.83) ↑ 76.83(20.89) ↑

Fine-grained

FLARE (Ours) 83.58(27.78) ↑↑ 81.07(26.91) ↑↑ 83.60(27.98) ↑↑ 82.58(24.39) ↑↑ 82.71(26.77) ↑↑

Figure 8: Confusion Matrix of 4 best models on our combined SpaceNet dataset

Figure 9: Normal distribution representing Mean and Variances across different dataset vari-
ants.
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Figure 10: t-sne plots representing the distribution of features across different dataset vari-
ants. representing 4 macro classes.

Table 6: Notations describing different datasets.
Notation Dataset Description

DLR Raw_LR, i.e., Raw Lower Resolution images

DLR
Aug Raw_Aug_LR, i.e., Raw Lower Resolution images and augmentations

DHR
Aug Raw_Aug_HR, i.e., Raw Higher Resolution images

DHR
T 2I T2I_Aug_HR, i.e., Syntheic samples in Higher Resolution

D̃HR SpaceNet (Ours)


