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3D LiDAR object detector plays an important role in autonomous driving, it identifies " . .
object information within a 3D road scene represented. Although discrete LiDAR . e A e =
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Figure 1: Different from the global bird’s eye view (BEV) Neighbor Feature Fusion Method (a) and

\intro duces ambiguity in accurately determining the true shape for a 3D detector.
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Trajectory-based Method (b), our proposed LiSTM count for the role of the future states
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« Motion-Guided Feature Aggregation (MGFA) is proposed
to utilize the object trajectory from previous and future
motion states to model spatial-temporal correlations into
gaussian heatmap over a driving sequence. This motion- e
based heatmap then guides the temporal feature fusion, & i
enriching the proposed object features.
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Figure 4: Dual Correlation Weighting Module.

Dual Correlation Weighting Module

« This motion-based heatmap then guides the temporal feature
fusion, enriching the proposed object features. Moreover, we
design a Dual Correlation Weighting Module (DCWM) that
effectively facilitates the interaction be tween past and prospective
frames through scene- and channel-wise feature abstraction.

In the end, a cascade cross-attention-based decoder is employed
to refine the 3D prediction.

Figure 2: Overview of proposed framework LiSTM

« The first module employs a single-stage detector
combined with tracking prediction to produce trajectories
and then enhances the spatial representation with a
Motion-Guided Feature Aggregation Module.
« The second module is used for cross-frame feature
\extraction by the proposed Dual Correlation Weighting
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Figure 3: Motion Guided Feature Aggregation.

Module and Motion Transformer.
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RESULTS

Computational Efficiency

Long Distance Perception

Model Model Parameter FPS

Memory cost

« LiSTM achieves an impressive improvement of over 8% CenterPoint [3] 7758811 Y464 MiB 5.6 iUs Mode! Vehicle  Pesenrioms | Cyclist | Vehicle  Pedurioms | Cyclist | Vehicle | Pedeeyiue | Cyelist
compared to single-stage models like CenterPoint [1], while ;‘EEFHP{NH 23] 207350 OIEMIB - 375 s Lot | Ga14  ases  esas | dem ssl mar | aass 125 st
R 1 . s . : . : : '
also outperformlng two-stage models such as PVRCNN[Z] LiSTM 175024 24400 MiB 596 it/s Table 9: Long distance perception metric on the Waymo validation set.

Table 7: Computational efficiency
Despite LiISTM having significantly larger model parameters,
its actual FPS is comparable to that of CenterPoint [1].
Moreover, LISTM demonstrates a nearly 50% speed
improvement over PV-RCNN]J2] while consuming less
memory and operating more efficiently than MSF [4].

 When com pared to two-stage models MPPNet [3] and MSF
[4], LISTM demonstrates clear advance ments in vehicle and °
cyclist detection which is attributed to motion-based feature
integration. .

« On the nuScenes dataset, LiSTM outperforms the
benchmarks, improving NDS and mAP by 2-3% compared to
CenterPoint [1]. Meanwhile, LISTM boost in ATE and ASE

« The LiSTM architecture leverages continuous
frames and motion priors to enhance
performance, particularly for long-range
detection.

* In our evaluation with the Waymo dataset, we

use three distance thresholds to metric.

Results show that LiISTM outperforms the

baseline by an average of 5 points in the 25m to

Qualitative Visualization .

Model Frames Vehicle (AP/APH)7T Pedestrian (AP/APH)T Cyeclist (AP/APH) 7
L1 L2 L1 L2 L1 L2 . .

PointPillar [11] i 669476636  58.06/5843 | 633574522 5521/3932 | 550675255 529775055 o 2 Sve 5% 75m range.
VoxelNet [37] 1 68.73/6731  60.11/59.97 | 69.65/57.38  60.19/53.67 | 6231/59.85  60.34/55.89 g - . .
PillarNet [ 19] 1 66.29/65.63  59.03/5843 | 7035/6424 6424/5575 | 6543/6393  63.53/62.08 ] & . ¢ Even beyond this range, where the p0|nt cloud
Second [31] 1 68.95/6833  61.81/61.24 | 6559/5480 57.85/48.16 | 61.14/5950  56.84/55.26 ' . . . . .
CenterPoint [34] I 67.87/6727 59.96/59.43 | 69.31/62.55 61.17/55.06 | 64.28/63.05  61.86/60.68 4 IS mOStly filtered OUt, LiISTM metrics remain
PartA2 [21] 1 6552/6485 573275663 | 5483/37.72 4685/32.10 | 5420/48.75 5221746890 I i )
PVRCNN [22] 1 7L11/7032  6260/61.88 | 6363/3277  5488/2826 | 59.49/34.14  57.22/3283 4 . b somewhat elevated Compared to the baseline.
VoxelRCNN [6] 1 71.51/7098  63.75/63.26 | 6595/6599  65.47/60.86 | 70.11/68.71  67.98/66.63 ¥ i
CenterPoint [34] ) 71.27/70.73  6359/63.09 | 73.91/7045 66.28/60.10 | 63.78/6298  61.59/60.82
CenterPoint [34] 16 7253/7131  64.18/6421 | 7405/71.17  66.17/61.03 | 64.05/64.54  62.31/61.77
MPPNet [3] 4 7424/73.55  6629/6538 | 7694/7229  68.63/66.16 | 67.34/66.67  65.12/64.48 Ground Truth g —
MSF [8] 4 7437/7397  6635/65.85 | 78.16/7491  7027/67.21 | 67.89/67.14  65.58/64.89 . .
LiSTM 3 74.83/7432  66.85/66.17 | 7580/69.72  66.83/63.43 | 70.84/69.75  68.23/69.12 Feature Fusion Stl’ategles

Table 1: Quantative comparisons on 20% Sequence Waymo validation set. the b f ith dule. LISTM d trat

* Wwe compare tne paseline witnh our moauie. LI emonstrates
Motion Feature Cyl. L2APH Veh. L2 APH

Niodel NDST _mAPT _wATE| mASE| wAOE| mAVE, mAAEL superior capability, particularly highlighted by the in e 6651 572

PointPillar [11] 58.62 45.27 0.3353 0.259 03286 0.2784 0.2002 y’ y g g y ’ fut?cur 66.47 65.78

Second [31] 62.31 50.8 03140 02554  0.2785 02587  0.2019 . ' :

ConmPoint 341 6629 5877 0919 02366 03695 02081  0.1837 detecting cases that CenterPoint fails to identify due to distance curZpre 613 &7

VoxelNext [4] 67.09  60.55 0.3023 0.2526 0.3701 0.2087 0.1851 : curztu : .

LiSTM 68.32  63.77  0.2895 0.2479 0.3182 0.2472 0.1850 and occlusion Challenges. cur2pre + cur2fut 66.57 65.83

Table 2: Quantative comparisons on nuScenes validation set. « Addition a||y LiSTM offers an increased number of positive __preZour + fut2cur 68.80 65.88
)

samples with no annotations, as indicated by the yellow arrows.
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CONCLUSION

.

Addressing the challenge of detecting sparse and occluded long-range LiDAR point clouds, we introduce LiSTM, a motion-based spatial-temporal fusion 3D point cloud detector. It
leverages well-designed motion features and motion-guided feature fusion to enhance detection performance on Waymo and nuScenes datasets. In future work, we will focus on
developing an end-to-end motion generator and exploring sparse feature representations.
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