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Figure 1: Different from the global bird’s eye view (BEV) Neighbor Feature Fusion Method
(a) and Trajectory-based Method (b) which do not count for the role of the future states, we
propose a novel LiDAR 3D object detection framework that utilizes motion forecasting to
guide the temporal fusion learning across past and future frames as shown in (c).

Abstract

Accurate and robust LiDAR 3D object detection is essential for comprehensive scene
understanding in autonomous driving. Despite its importance, LiDAR detection perfor-
mance is limited by inherent constraints of point cloud data, particularly under conditions
of extended distances and occlusions. Recently, temporal aggregation has been proven
to significantly enhance detection accuracy by fusing multi-frame viewpoint information
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and enriching the spatial representation of objects. In this work, we introduce a novel
LiDAR 3D object detection framework, namely LiSTM, to facilitate spatial-temporal
feature learning with cross-frame motion forecasting information. We aim to improve
the spatial-temporal interpretation capabilities of the LiDAR detector by incorporating
a dynamic prior, generated from a non-learnable motion estimation model. Specifically,
Motion-Guided Feature Aggregation (MGFA) is proposed to utilize the object trajectory
from previous and future motion states to model spatial-temporal correlations into gaus-
sian heatmap over a driving sequence. This motion-based heatmap then guides the tem-
poral feature fusion, enriching the proposed object features. Moreover, we design a Dual
Correlation Weighting Module (DCWM) that effectively facilitates the interaction be-
tween past and prospective frames through scene- and channel-wise feature abstraction.
In the end, a cascade cross-attention-based decoder is employed to refine the 3D predic-
tion. We have conducted experiments on the Waymo and nuScenes datasets to demon-
strate that the proposed framework achieves superior 3D detection performance with
effective spatial-temporal feature learning. https://github.com/YuRui-Learning/LiSTM

1 Introduction

3D LiDAR object detector [11, 34, 37] plays an important role in autonomous driving, it
identifies object information within a 3D road scene represented by an unstructured point
cloud. Although discrete LiDAR points reflect accurate spatial positioning of surrounding
driving scenes, they are insufficient to comprehensively describe traffic objects due to data
sparsity, particularly at far distances. Moreover, the LiDAR sensor captures partial view
information of a scene from a single-frame perspective, leading to incomplete information
collection of the visible objects. These inherent limitations of LiADR result in inconsistent
point distribution for the same object across a driving sequence. Hence, a dynamic object
may be represented with varying densities of point clouds in different frames, which intro-
duces ambiguity in accurately determining the true shape for a 3D detector.

To eliminate the inconsistency, the increasing works [2, 33, 38] attempt to detect 3D
objects by utilizing multiple frames of point clouds. The LiDAR sensor records driving
scenarios as the vehicle moves, delineating objects across multiple perspectives in sequence.
This adds valuable modal information, enriching object representation. A straightforward
method to implement this idea is to fuse the neighboring frame features, using the insight of
historical frames to enhance the semantic representation of the current scene. Referring to
the application of transformer in computer vision, the cross-attention mechanism bridges the
previous and current point features either densely or sparsely, as depicted in Figure 1(a).

Direct integration of features for historical frames enhances the detection performance,
but this method struggles to handle fast-moving objects. To solve this issue, trajectory-based
methods [3, 8] are designed to aggregate extensive temporal contexts of the object flows
and utilize multi-frame proposals to comprehend the spatial information among the driving
scenes. As shown in Figure 1(b), this method enhances the representation of the object
by incorporating multi-view complementary information from the corresponding trajectory.
However, this input-level manipulation is resource-intensive, limiting detection efficiency.

To boost temporal object detection, we propose a novel LiDAR 3D object detection with
enhancing Spatial-Temporal feature fusion through Motion estimation, namely LiSTM. We
bolster spatial-temporal feature fusion by integrating a Kalman filter module [10] as prior ki-
netic information and focus on effectively integrating both ego and object motion states. Un-
like previous approaches [3, 8] that directly encode proposal trajectories with point clouds,

Citation
Citation
{Lang, Vora, Caesar, Zhou, Yang, and Beijbom} 2019

Citation
Citation
{Yin, Zhou, and Krahenbuhl} 2021

Citation
Citation
{Zhou and Tuzel} 2018

Citation
Citation
{Calvo, Taveira, Kahl, Gustafsson, Larsson, and Tonderski} 2023

Citation
Citation
{Yin, Shen, Guan, Zhou, and Yang} 2020

Citation
Citation
{Zhou, Zhao, Wang, Wang, and Foroosh} 2022

Citation
Citation
{Chen, Shi, Zhu, Cheung, Xu, and Li} 2022

Citation
Citation
{He, Li, Zhang, Li, and Zhang} 2023

Citation
Citation
{Kim, O{²}ep, and Leal-Taix{é}} 2021

Citation
Citation
{Chen, Shi, Zhu, Cheung, Xu, and Li} 2022

Citation
Citation
{He, Li, Zhang, Li, and Zhang} 2023

https://github.com/YuRui-Learning/LiSTM


LISTM: BOOSTING 3D OBJECT DETECTION WITH TEMPORAL MOTION ESTIMATION 3

we uncover an implicit feature representation for both trajectories and point clouds within
the BEV space using the motion-based heatmap generator. This enables direct feature-level
fusion, eliminating the need for reliance on the PointNet [18] backbone. To have a stronger
dynamic prior for each frame, we design the Motion-Guided Feature Aggregation (MGFA)
mechanism to combine the heatmap generated by trajectory prediction for guiding the re-
construction of LiDAR features. Ultimately, with the integration of the Dual Correlation
Weighting Module (DCWM) and Motion Transformer, we enhance feature characterization
across frames, thereby enriching the semantic and geometric representations.

The main contributions of this paper can be summarized as follows:

• We propose a novel LiDAR object detector considering future motion estimation of
objects and point clouds to enhance the effectiveness of the spatial-temporal fusion.

• We design a Motion-Guided Feature Aggregation (MGFA) mechanism to enhance ob-
ject geometric representations of motions, and the Dual Correlation Weighting Module
(DCWM) to characterize the spatial relationship of features across sequences.

• We conduct experiments on the nuScenes and Waymo datasets to validate our pro-
posed framework, which outperforms CenterPoint by 8% on the Waymo dataset.

2 Related Work
BEV 3D Object Detection. The bird’s-eye view (BEV) is a widely used feature represen-
tation in the field of autonomous driving which is derived from LiDAR’s ability to perceive
objects from a circular viewpoint. Thanks to the PointNet series [18], point-based methods
[20] have become extensively employed to extract geometric features directly from point
clouds. Voxel-based methods [4, 35, 37] and Pillar-based methods [11, 19] are mainly ap-
plied in environmental perception by converting point cloud to BEV feature. Meanwhile,
Camera-based detectors [14, 17] learn pixel-wise categorical depth distributions to lift 2D
images of different views into BEV space. Additionally, Li et al. [15] proposes a spatiotem-
poral transformer and focus on feature fusion in the spatial-temporal 4D working space.
Keypoint Detection. Anchor-based methods [16, 26] often result in redundant bounding
boxes, requiring the use of Non-Maximum Suppression. Law and Deng [12] produce two
corner pairs to detect, while Zhou et al. [36] uses keypoint estimation with a normal distri-
bution to locate center points, which use the central region to regress other properties. There-
fore, CenterPoint [34] follows the struct of CenterNet [36] and employs an object detector in
BEV space. Zhou et al. [38] utilizes the initial query embedding to facilitate learning of the
transformer and uses cross attention to efficiently aggregate neighboring features.
Temporal Fusion Methodology. Temporal Fusion plays a critical role in autonomous driv-
ing, allowing models to gain a deeper understanding of contextual geometric information.
Zhou et al. [38] performs multi-frame features fusion by utilizing spatial-aware attention,
while RNN-based models [2, 33] employ LSTM and GRU to fuse previous state features
with the current feature. BEVFormer [15] designs a temporal deformable attention to fuse
previous features for enhanced performance. Meanwhile, Wang et al. [28] develops an
object-centric temporal mechanism and a motion-aware layer normalization to model the
movement of the objects. 3D-MAN [32] utilizes a multi-frame alignment and aggregation
module to learn temporal attention for detection from multiple frames. motion-based mod-
els [3, 8, 9] design point-trajectory transformer with long short-term memory for efficient
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temporal 3D object detection. Li et al. [13] uses motion forecasting outputs as a type
of virtual lightweight sensor modality. Hence, we propose a more powerful and efficient
spatial-temporal fusion model under BEV using CenterPoint [34] as the baseline.
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Figure 2: Overview of our proposed framework LiSTM. It processes multi-frame point
clouds by performing voxelization before feeding them into the LiDAR BEV encoder. The
first module employs a single-stage detector combined with tracking prediction to produce
trajectories and then enhances the spatial representation with a Motion-Guided Feature Ag-
gregation Module. The second module is used for cross-frame feature extraction by the
proposed Dual Correlation Weighting Module and Motion Transformer.

3 Approach
As depicted in Figure 2, to incorporate the motion prior, we focus in Section 3.1 on the gen-
eration of the motion feature and the Motion-Guided Feature Aggregation (MGFA) mecha-
nism. Then, the Dual Correlation Weighting Module (DCWM) and the Motion Transformer
will be presented in Sections 3.2 and 3.3 to describe the cross-frame fusion strategy.

3.1 Motion-Guided Feature Aggregation
Unlike the early fusion methods [3, 8], we utilize motion-based heatmap representing tem-
poral streams to normalize features of objects for deep fusion. To predict object positions in
future scenes, we use a kinematic model of ego-motion to derive the transformation matrix
from time t to t +n, based on prior motion data and ego-pose observations. The transforma-
tion matrix is then used to transfer the point cloud in the current scene to a future coordinate,
but it only applies to static objects and obtains a coarse-grained prediction. However, whether
the points are predictions or observations are processed through voxelization and encoder to
produce features Fmulti = {Ft−n, ...,Ft+n}. Then as implemented in CenterPoint [34], we can
get multi-frame proposals, which are temporal independence and geometric correlation.
Motion Model. After acquiring multiple consecutive frames of object proposals, we can use
a Kalman filtering [10] to estimate the motion state of each object across the frames. We
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define a ten-dimension state space (x,y,z,θ , l,w,h, ẋ, ẏ, ż), where B = (x,y,z) is the center
of a 3d bounding box, Pdim = (l,w,h) is the object size, θ is the orientation under BEV
and V = (ẋ, ẏ, ż) are the respective velocities in the 3D space learned by a Kalman filter for
constant velocity motion with a linear observation model.
Trajectory Prediction. With the Kalman filter modeling multiple targets over a driving se-
quence, we can obtain information about the velocity prediction V t of each proposal at every
moment. For the forward trajectory prediction, we utilize the bounding box observation Bt−1
at t −1, along with the velocity prediction Vt−1, to update the B′t for frame t. Similarly, for
the reverse trajectory prediction, we employ the bounding box observation Bt+1 at t +1 and
the updated velocity prediction Vt+1 to reverse-predict the predicted the B′′

t :

B′
t = Bt−1 +V t−1 ·∆t, (1)

B′′
t = Bt+1 −V t+1 ·∆t. (2)

Motion-based Heatmap Generator. After acquiring the forward and backward trajectory
predictions B′

t and B′′
t , we transfer these trajectories into motion feature Fmotion using gaussian

distribution. As is known, gaussian distribution is determined as:

µ
x
k = cxk, µ

y
k = cyk, (3)

where µk represents the location of the proposal under BEV, and σk is the hyperparameter of
the category associated with the category of the kth object.

For the normal representations Nt
t−1(µk,σ

2
k ) and Nt

t+1(µk,σ
2
k ) of each frame proposal

generated by bidirectional trajectory prediction, We respectively use the σk to control the
probability of the distribution and the µk to represent the center of the distribution. Given
the proposals from neighboring frames, we can consolidate all distributions into the BEV
representation Fmotion, which enhances the understanding of agent objects by providing ad-
ditional motion modality insights. This can be very effective in solving fast-moving objects
and supplying a prior for occlusion situations.
Motion Guided Feature Aggregation Module. The designed MGFA module utilizes the
information from previous and future motion states to interact with dense BEV features
to model spatial-temporal correlations. By incorporating Fmotion, we can enrich positional
semantic information and integrate motion characterization into the model’s understanding.
As mentioned, the motion feature includes bidirectional projections for the target frame.
Therefore, the specific motion features are denoted as follows, with p2c and f 2c representing
past and future predictions of the current frame, respectively:

F p2c
motion = {Nt−n

t−n−1, ...N
t
t−1, ...,N

t+n
t+n−1}, (4)

F f 2c
motion = {Nt−n

t−n+1, ...N
t
t+1, ...,N

t+n
t+n+1}. (5)

Based on the given feature Fmotion, it is first expanded along the channel dimension and
then processed by a shared Conv to encode the geometric information of the target center.
Specifically, Conv denotes channel expansion followed by dimensionality reduction within
the channel dimension:

F p2c/ f 2c
center =Conv(repeat(F p2c/ f 2c

motion )). (6)

After obtaining the center distribution feature F p2c/ f 2c
center , we follow the method illustrated

in Figure 3 to perform the feature fusion using a shared convolutional network. In the aggre-
gation of forward prediction, we merge the forward distribution feature F p2c

center of the target
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frame from the previous frame with the BEV feature by using a convolutional network. It
mainly convolves the channel dimension to realize the fusion of heterogeneous features:

FMGFA =Conv(Fmulti,F
p2c

center) = {Conv(Ft−n,Nt−n
t−n−1), ...,Conv(Ft+n,Nt−n

t+n−1)}. (7)

Similarly, in reverse trajectory prediction, the center distribution feature F f 2c
center is sequen-

tially concatenated and convolved with the BEV feature to enhance the dynamic property:

F ′
MGFA =Conv(FMGFA,M

f 2c
center) = {Conv(F ′

t−n,N
t−n
t−n+1), ...,Conv(F ′

t+n,N
t−n
t+n+1)}. (8)

3.2 Dual Correlation Weighting Module
Unlike the feature concatenation in Figure 1(a), we propose learning a multi-frame fusion
weight matrix to capture cross-frame correlations in both channel and temporal dimensions.
As shown in Figure 4, global max pooling (GMP) is first applied along the spatial dimensions
to obtain a feature vector vt . Subsequently, vectors from multiple frames are concatenated to
form a representation for the scene sequence data, denoted as V = {vt−n, ...,vt+n}:

V =Concat(vt−n, ..,vt+n) =Concat(GMP{F
′t−n
MGFA}, ..,GMP{F

′t+n
MGFA}), (9)

Md/t =
conv(V d/t

i ,V d/t
j )

σ
V d/t

i
∗σ

V d/t
j

. (10)

We then compute the correlation between matrices across each vector(e.g., i and j), where
V d/t denotes the process of transforming the sequence along the channel and temporal. After
obtaining the correlation matrices Md and Mt , which represent interlinks within the feature
structure and across frames in the temporal domain, respectively, the weight matrix is flat-
tened and passed through a two-layer linear network with ReLU activation:

Wd/t = Linear(ReLu(Linear(Md/t))). (11)

Eventually, we obtain weight vectors W d/t for channels and temporal dimensions, re-
spectively, and generate the weight matrix Mweight through their outer product ⊗. Then, this
weight is multiplied and channel-wise convolution with the MGFA feature F ′′

MGFA (excluding
the current frame) to generate the Dual Correlation Weighting feature FDCWM as follows:

FDCWM =Conv(F ′′
MGFA ·Mweight) =Conv(F ′′

MGFA · (Wd ⊗Wt)). (12)
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Model Frames Vehicle (AP/APH)↑ Pedestrian (AP/APH)↑ Cyclist (AP/APH)↑
L1 L2 L1 L2 L1 L2

PointPillar [11] 1 66.94 / 66.36 58.96 / 58.43 63.35 / 45.22 55.21 / 39.32 55.06 / 52.55 52.97 / 50.55
VoxelNet [37] 1 68.73 / 67.31 60.11 / 59.97 69.65 / 57.38 60.19 / 53.67 62.31 / 59.85 60.34 / 55.89
PillarNet [19] 1 66.29 / 65.63 59.03 / 58.43 70.35 / 64.24 64.24 / 55.75 65.43 / 63.93 63.53 / 62.08
Second [31] 1 68.95 / 68.33 61.81 / 61.24 65.59 / 54.80 57.85 / 48.16 61.14 / 59.50 56.84 / 55.26
CenterPoint [34] 1 67.87 / 67.27 59.96 / 59.43 69.31 / 62.55 61.17 / 55.06 64.28 / 63.05 61.86 / 60.68
PartA2 [21] 1 65.52 / 64.85 57.32 / 56.63 54.83 / 37.72 46.85 / 32.19 54.29 / 48.75 52.21 / 46.89
PVRCNN [22] 1 71.11 / 70.32 62.60 / 61.88 63.63 / 32.77 54.88 / 28.26 59.49 / 34.14 57.22 / 32.83
VoxelRCNN [6] 1 71.51 / 70.98 63.75 / 63.26 65.95 / 65.99 65.47 / 60.86 70.11 / 68.71 67.98 / 66.63
CenterPoint [34] 4 71.27 / 70.73 63.59 / 63.09 73.91 / 70.45 66.28 / 60.10 63.78 / 62.98 61.59 / 60.82
CenterPoint [34] 16 72.53 / 71.31 64.18 / 64.21 74.05 / 71.17 66.17 / 61.03 64.05/ 64.54 62.31 / 61.77
MPPNet [3] 4 74.24 / 73.55 66.29 / 65.38 76.94 / 72.29 68.63 / 66.16 67.34/ 66.67 65.12 / 64.48
MSF [8] 4 74.37 / 73.97 66.35 / 65.85 78.16 / 74.91 70.27 / 67.21 67.89/ 67.14 65.58 / 64.89
LiSTM 3 74.83 / 74.32 66.85 / 66.17 75.89 / 69.72 66.83 / 63.43 70.84 / 69.75 68.23 / 69.12

Table 1: Quantative comparisons on 20% Sequence Waymo validation set.

Model NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
PointPillar [11] 58.62 45.27 0.3353 0.259 03286 0.2784 0.2002
Second [31] 62.31 50.8 0.3140 0.2554 0.2785 0.2587 0.2019
CenterPoint [34] 66.29 58.77 0.2919 0.2566 0.3692 0.2081 0.1837
VoxelNext [4] 67.09 60.55 0.3023 0.2526 0.3701 0.2087 0.1851
LiSTM 68.32 63.77 0.2895 0.2479 0.3182 0.2472 0.1850

Table 2: Quantative comparisons on nuScenes validation set.

3.3 Motion Transformer
With the assistance of the designed modules MGFA and DCWM, the features are enhanced
to include details about both ego-motion and object-motion. The attention mechanism [27]
is then employed using a transformer decoder to focus on feature learning within the spatial-
temporal 4D space. First, the features are processed through self-attention as follows:

QC/M = MultiHeadAttn(Q(FC/M +PE),K(FC/M +PE),V (FC/M)), (13)

where FC/M represents the current frame feature and DCWM feature, QC/M denotes the
query and PE is the position embedding. After self-attention, we make a cross-attention
mechanism with QC and QM , which guides the training to focus on aggregating more spatial
information containing meaningful object details. Then, the cross-attention is shown below:

Q′
C = MultiHeadAttn(Q(QC +PE),K(QM +PE),V (QM)). (14)

After feature generation and fusion, we get the final target characterization Q′
C. Then we

follow the steps of CenterPoint [34] to learn the representation of the different geometric
elements in the 3D scene.

4 Experiments
Dataset and Metrics. The Waymo Open dataset [24] is a highly regarded benchmark for
automatic driving. It consists of 1150 point cloud sequences, with over 200,000 frames in
total. Evaluation of results using mean Average Precision (mAP) and its weighted variant by
heading accuracy (mAPH). Results are reported for LEVEL 1 (L1, easy only) and LEVEL 2
(L2, easy and hard) difficulty levels, considering vehicles, pedestrians, and cyclists.

The nuScenes dataset [1] provides diverse annotations for autonomous driving and fea-
tures challenging evaluation metrics. These include mean Average Precision (mAP) at four
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CenterPoint MotionTransformer MGFA DCWM Veh. L2 APH Ped. L2 APH Cyl. L2 APH
✓ × × × 59.51 55.22 60.54
✓ ✓ × × 62.49 56.04 63.17
✓ ✓ ✓ × 64.67 57.56 67.86
✓ ✓ ✓ ✓ 65.88 61.10 68.8

Table 3: Ablation studies on Waymo validation set.

center distance thresholds and five true-positive metrics: ATE, ASE, AOE, AVE, and AAE,
which measure translation, scale, orientation, velocity, and attribute errors, respectively. Ad-
ditionally, the nuScenes detection score (NDS) combines mAP with these metrics.
Experimental Settings. In our experimental setup, we follow the default settings of Open-
pcdet [25] and conduct the experiments using two 24GB Nvidia RTX 3090 GPUs. The
validation process utilized the nuScenes and Waymo datasets. We employed the AdamW
optimizer with a base learning rate of 3×10−3 and applied layer-wise learning rate decay.
Comparison Experiment. We validate the effectiveness of the designed LiSTM on Waymo’s
validation set (Table 1), using 20% of the sequences for training. Full results are available in
Table 8 of the Appendix. LiSTM achieves an impressive improvement of over 8% compared
to single-stage models like CenterPoint [34], while also outperforming two-stage models
such as PVRCNN [22] and VoxelRCNN [6]. Meanwhile, LiSTM, a multi-frame single-
stage model, eliminates the need for region-of-interest extraction, resulting in reduced re-
source consumption, as illustrated in Table 7. In comparison to multi-frame CenterPoint
[34], LiSTM achieves remarkable improvements while utilizing fewer frames. When com-
pared to two-stage models MPPNet [3] and MSF [8], LiSTM demonstrates clear advance-
ments in vehicle and cyclist detection which is attributed to motion-based feature integration.
More details and discussions can be found in the Appendix.

In Figure 5, we compare the baseline with our module. LiSTM demonstrates superior
capability, particularly highlighted by the pink arrows, in detecting cases that CenterPoint
fails to identify due to distance and occlusion challenges. Additionally, LiSTM offers an
increased number of positive samples with no annotations, as indicated by the yellow arrows.

On the nuScenes dataset, LiSTM outperforms the benchmarks PointPillar [11] and Vox-
elNet [37], improving NDS and mAP by 2-3% compared to CenterPoint [34]. Meanwhile,
LiSTM is a boost in ATE and ASE as noted in Table 2.

Ground Truth CenterPoint LiSTM

Figure 5: Qualitative visualization of our LiSTM on Waymo validation set. We show the 3D
boxes predictions in the LiDAR bird’s-eye-view

Ablation Study. As shown in Table 3, we compare the CenterPoint [34], Motion Trans-
former, Motion-Guided Feature Aggregation, and Dual Correlation Weighting Module se-
quentially for feature fusion structure, and we can see that CenterPoint is difficult to model
multi-frame features. Meanwhile, modeling features solely through a Transformer can be
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Experiment Number Time Veh. L2 APH Ped. L2 APH Cyl. L2 APH
1 t 62.13 60.91 61.16
2 t −1, t 63.41 58.17 62.37
3 t −2, t −1, t 63.46 58.62 63.89
4 t −1, t, t +1 65.88 61.10 68.80
5 t −2, t −1, t, t +1, t +2 65.73 61.13 67.56

Table 4: Ablation study of the frame fusion effects on Waymo validation set.

challenging. The proposed methods MGFA and DCWM offer a significant enhancement in
APH by 2-3% through the incorporation of dynamic priors into the Transformer models.

Since our task is a multi-frame fusion strategy, we need to consider the number of frames
to be used. In Table 4, we compare the effects of multi-frame fusion including single-frame,
past-frame fusion, and past-future fusion. In summary, we can draw three key conclusions.
Firstly, the fusion of cross-frame, as seen (EXP. 1,2, and 4), significantly contributes to
detection results. Secondly, using too many frames (EXP. 5) not only increases memory
requirements but also hampers model convergence. The main reason this conclusion dif-
fers from MSF [8] is that we use feature-level temporal fusion, whereas excessive attention
stacking can hinder target characterization. Lastly, relying solely on past frames limits the
model’s understanding of the scene’s geometry (EXP. 3 and 4). Incorporating both past and
future frames provides a more comprehensive context for improved performance.

Motion Feature Cyl. L2 APH Veh. L2 APH
pre2cur 66.51 65.72
fut2cur 66.47 65.78
cur2pre 66.13 65.7
cur2fut 66.21 65.72

cur2pre + cur2fut 66.57 65.83
pre2cur + fut2cur 68.80 65.88

Table 5: Ablation study of motion-based heatmap
feature selections on Waymo validation set.

Fusion Method NDS mAP
Concatenate 66.79 58.13
Attention [7] 65.37 58.99

Spatial Fusion [38] 67.13 60.31
DCWM 68.32 63.77

Table 6: Ablation study of different
feature fusion strategies on Waymo
validation set.

We select the motion feature as shown in Table 5, it fuses the information of object mo-
tion and encodes its features according to trajectory predictions. However, we find the feature
observed at different times does not have much effect on the metrics. It can be concluded
that the trajectory feature predicted by the future and the past for the present works best and
is the most logical. For multiple frames feature map fusion, we sequentially compare the
following schemes, concatenate, attention, and spatial-aware attention which are mentioned
in CenterFormer [38] and our proposed DCWM in Table 6. We can discern that directly em-
ploying attention could hinder model learning, potentially yielding inferior results compared
to concatenation and spatial fusion. However, our proposed Dual Correlation Weighting
Module effectively fuses multiple frames and brings more pronounced enhancements.

5 Counclusion
Addressing the challenge of detecting sparse and occluded long-range LiDAR point clouds,
we introduce LiSTM, a motion-based spatial-temporal fusion 3D point cloud detector. It
leverages well-designed motion features and motion-guided feature fusion to enhance de-
tection performance on Waymo and nuScenes datasets. In future work, we will focus on
developing an end-to-end motion generator and exploring sparse feature representations.
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Appendix
Computational Efficiency. We acknowledge that some reviewers have raised concerns re-
garding the computational resources. To address this, we compare CenterPoint, PVRCNN,
MSF, and LiSTM. Despite LiSTM having significantly larger model parameters, its actual
FPS is comparable to that of CenterPoint [34]. Moreover, LiSTM demonstrates a nearly
50% speed improvement over PV-RCNN++ [23] while consuming less memory and oper-
ating more efficiently than MSF [8]. This performance advantage primarily stems from our
use of sparse feature operations and shared networks, which eliminate the need for compu-
tationally intensive processes such as multi-frame splicing and resampling.

Model Model Parameter Memory cost FPS
CenterPoint [34] 7758811 2464 MiB 5.68 it/s
PV-RCNN++ [23] 13073505 3918 MiB 3.75 it/s
MSF [8] 15661651 6684 MiB 4.58 it/s
LiSTM 17592422 4400 MiB 5.26 it/s

Table 7: Computational efficiency

Point-Trajectory Model Analysis and Performance Comparison. Taking MSF [8] as an
example, it enhances temporal features at the input level in two stages. In contrast, our
approach targets implicit features, allowing for more efficient parallel computation and im-
proved resource utilization. Unlike MSF’s ROI sampling on point clouds, our method con-
structs a BEV heatmap, significantly boosting performance for larger targets like Vel (6m)
and Cly (2m). However, for smaller targets like Ped (0.5m), even minor deviations can
reduce performance, leading to lower results compared to MSF.
Lack Related Work on The Motion Estimation Model. Works [5, 29, 30] have proposed
learnable SOT models and we will try to complete the end-to-end model in this direction
in the future. However, this class of methods requires significant computational resources
and is not well-suited for multiple target detectors. Therefore, our proposed strategy is to
use a simple linear Kalman model for target trajectory prediction, which characterizes target
motion a priori without the need for learnable parameters or GPU resources.
Total Waymo Evaluation. The model validation results for Waymo’s full training dataset
are shown below, focusing on a comparison between CenterPoint [34] and PVRCNN++ [23].

Model Vehicle (AP/APH)↑ Pedestrian (AP/APH)↑ Cyclist (AP/APH)↑
L1 L2 L1 L2 L1 L2

CenterPoint [34] 72.64 / 72.10 64.57 / 64.07 74.53 / 68.36 66.50 / 60.84 71.14 / 69.91 68.56 / 67.37
PV-RCNN++ [23] 77.80 / 77.34 69.43 / 69.01 80.00 / 73.94 71.62 / 65.97 72.43/ 71.35 69.79 / 68.74
LiSTM 78.91 / 78.31 70.64 / 70.10 80.79 / 75.01 72.16 / 66.87 74.42 / 73.33 71.84 / 70.79

Table 8: Quantative comparison on Waymo validation set.

Long Distance Perception. The LiSTM architecture leverages continuous frames and mo-
tion priors to enhance performance, particularly for long-range detection. In our evaluation
with the Waymo dataset, which covers a 75m radius horizontally and vertically, we use three
distance thresholds to metric. Results show that LiSTM outperforms the baseline by an av-
erage of 5 points in the 25m to 75m range. Even beyond this range, where the point cloud is
mostly filtered out, LiSTM metrics remain somewhat elevated compared to the baseline.

Model 25m away mAP↑ 50m-75m mAP↑ 75m away mAP↑
Vehicle Pedestrians Cyclist Vehicle Pedestrians Cyclist Vehicle Pedestrians Cyclist

CenterPoint [34] 58.80 63.12 61.37 41.82 54.00 50.50 11.46 16.30 14.82
LiSTM 64.14 68.05 65.25 46.31 57.51 53.87 12.89 17.25 15.16

Table 9: Long distance perception metric on the Waymo validation set.
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